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Abstract

Airway deformation and stenosis can be key signs of pathology such as lym-
phadenopathy. This study presents a local airway point distribution model
(LA-PDM) to automatically analyse regions of the airway tree in CT scans
and identify abnormal airway deformation. In our method, the airway tree is
segmented and the centreline identified from each chest CT scan. Thin-plate
splines, along with a local mesh alignment method for tubular meshes, are
used to register the airways and develop point distribution models (PDM).
Each PDM is then used to analyse and classify local regions of the airway.
This LA-PDM method was developed using 89 training cases and evaluated
on a 90 CT test set, where each set includes paediatric tuberculosis (TB) cases
(with airway involvement) and non-TB cases (without airway involvement).
The LA-PDM was able to accurately distinguish cases with airway involve-
ment with an AUC of the ROC classification (and 95% confidence interval)
of 0.87 (0.77-0.94) for the Trachea-LMB-RMB region and 0.81 (0.68-0.90)
for the RMB-RUL-BI region – outperforming a comparison method based on
airway cross-sectional features. This has the potential to assist and improve
airway analysis from CT scans by detecting involved airways and visualising
affected airway regions.
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1. Introduction

Tuberculosis is still prevalent – particularly in developing countries. The
WHO estimates the annual number of new cases of TB to be 343 / 100 000
in Africa, higher than any other region (WHO, 2012). Childhood tuberculo-
sis represents a large proportion of TB cases and is particularly difficult to
diagnose; the disease is confirmed in less than 40% of cases (Schaaf et al.,
1995). While most TB in adults is confirmed from sputum samples, child-
hood TB has a low sputum bacilli count, and, therefore, the diagnosis is
based on a number of factors, with imaging playing a major role. Other indi-
cators include: contact with an infected adult (often difficult to determine);
symptoms and signs (vague and common); and tuberculin skin test (positive
test only indicates exposure and false negatives can be attributed to HIV or
other immune disorders). Each of these tests is imperfect but a combination
is used to diagnose TB (Gie, 2003). Recent studies have highlighted increas-
ing clinical interest and the need for further research into the diagnosis and
treatment of paediatric TB (Sandgren et al., 2012).

Lymph node involvement is a key indicator of childhood TB, and as the
lymph nodes enlarge the airways are compressed or deformed. This is because
paediatric patients have smaller airways with less well developed cartilage –
predisposing them to compression. This is known as lymphobronchial TB
and is a current clinical focus in childhood TB research (Lucas et al., 2012;
Goussard et al., 2013). Airway involvement due to lymphadenopathy is rela-
tively common in children (between 29% (Andronikou et al., 2004) and 38%
(Theart et al., 2005) of cases). This deformation can occur due to one en-
larged lymph node, or compression can be due to an enlarged lymph node
on both sides or a lymph node and a vessel, which can be used as an indi-
cator of TB (Goussard and Gie, 2007; Andronikou et al., 2004). Figure 1
shows a MinIP projection with airway stenosis caused by lymphadenopathy
in a paediatric pulmonary TB patient. The most affected airways include
the bronchus intermedius (BI), left main bronchus (LMB), trachea and right
main bronchus (RUL) (Lucas et al., 2012; Goussard et al., 2013).

Determining airway involvement and cause is important for the treatment
of paediatric TB and other diseases affecting the airways (Andronikou et al.,
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Figure 1: a) Coronal minimum intensity projection (MinIP) image with arrows indicating
lymphadenopathy. Stenosis of the left main bronchus (LMB) and bronchus intermedius
(BI) is visible. Arrows indicate locations of lymphadenopathy. b) A diagram of the airway
showing: A) Trachea, B) right main bronchus (RMB), C ) right upper lobe bronchus (RUL)
D) bronchus intermedius (BI) and E ) left main bronchus (LMB)

2013). Bronchoscopy is the “gold standard” for determining airway involve-
ment but is invasive, general anaesthesia is often required and the external
cause of the airway involvement can not be seen. Recent studies suggest that
CT with volume rendering can be used as an alternative to bronchoscopy
(du Plessis et al., 2009) – offering the benefits of bronchoscopy while also
allowing visualisation of the external cause of the airway involvement. This
method allows manual measurements of airway cross-sections from the 3D
rendering of the region, but requires considerable manual interaction in the
form of setting thresholds, viewing parameters, and manual assessment of
the airways, and a more automated approach to monitor airway involvement
would be beneficial.

Thus, there is considerable value in automatically detecting airway in-
volvement from lymphadenopathy to assist in the detection and assessment
of paediatric patients with tuberculosis (and potentially other diseases). In
this study we developed a method we call the local airway point distribution
model (LA-PDM) to assess normal and pathological variation in local regions
of the airway. Point distribution models are effective for capturing variation
that is more complex than airway narrowing – where more complex variation
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is related to airway involvement from lymphadenopathy.
Section 2 discusses current methods used for airway analysis and Section 3

outlines our proposed LA-PDM method. This method performs a 3D airway
segmentation using chest CT images, and then a branch labelling of the
segmented airway (Section 3.1). Surface point correspondence is developed
between the dataset of segmentations (Section 3.3 and 3.4) and used to create
point distribution models for local regions of the airway (Section 3.6). The
LA-PDM can then be used to distinguish normal and abnormal variation in
local airway regions of a new CT image. Section 4 applies the LA-PDM to a
90 patient test dataset of paediatric chest CT scans. The results of the LA-
PDM on the test set is shown in Section 5 and compared to simpler branch
diameter based features, and show promising results for detection of airway
pathology related to paediatric TB.

2. Airway shape analysis

A number of studies have developed methods that automate branch di-
ameter measurements as well as the broncho-aterial ratio from segmented
adult airways (Kiraly et al., 2008; Tschirren et al., 2005; Palágyi et al.,
2006). Applications include detection of chronic obstructive pulmonary dis-
ease (COPD) and asthma identification (Petersen et al., 2010; Fetita et al.,
2010; Wiemker et al., 2004). These methods are useful but rely on the iden-
tification of pathology from variation in local airway diameter.

External changes such as lymphadenopathy produce more global changes
in airway shape that are difficult to identify from an analysis of local features.
Point distribution models (PDM) allow more complex airway shape variation
to be modelled. Deligianni et al. (2006) use a PDM of an airway phantom
to model breathing but do not consider inter-patient variability or detection
of pathology. Pinho et al. (2011) used a PDM to build individualised models
of the healthy trachea for patients with stenosis. The difference between
the models can be used to assist with stent implants. Given the global
variability of the airway shape and the complexity of a branching airway
tree, this method is not suitable for the analysis of airway bronchi (Pinho
et al., 2011).

Initial steps in the development of our LA-PDM method were introduced
in Irving et al. (2011) which provided a proof of concept by using the tra-
chea and main bronchi to distinguish cases with TB (acquired from South
Africa) from cases without TB (acquired from the UK). This paper presents
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a more detailed account of a refined method, extended to analyse multiple
regions of the airway tree with improved region selection and correspondence
detection. A full evaluation of the method is also presented, on a previ-
ously unseen dataset of cases with and without airway abnormalities that
have been acquired from the same hospital. We analyse the shape model
characteristics and compare the performance to features derived from airway
cross sections. The authors are not aware of any previous methods that have
detected abnormal airway variation from lymphadenopathy or paediatric TB.

3. Local airway point distribution models for abnormality detec-
tion

Figure 2 shows our proposed method that uses a PDM of local regions
of the airway to detect airway abnormalities. Airways are segmented and
the branches are labelled. Surface mesh correspondence is developed using a
reference airway, and PDMs with trained classifiers are used to detect airway
abnormalities.

Airway
Segmentation

Branch labelling

Surface landmark
correspondence

TPS and local
airway alignment

Trained Local
Airway PDM

Feature extraction 
for local

airway region

Classification of 
airway pathology

Chest CT

Reference
Airway

Figure 2: The steps for airway shape analysis using local airway point distribution models.
The airway is segmented from a chest CT and the airway structure is extracted. Surface
landmarks are generated and a representative airway from the training set is warped onto
the airway to create vertex-vertex correspondence. Features are generated using the airway
PDM and are used to classify airway pathology.
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3.1. Segmentation and branch labelling
Initially the airway tree is segmented from each chest CT scan and each

branch is labelled. There are a number of well established methods for airway
segmentation and labelling, and we implement existing algorithms (Lo et al.,
2012; Palágyi et al., 2006). The first axial slice containing lung volume was
used as a reference position from which the segmentation was initialised.
The glottis could be a more reliable landmark on the trachea but was not
present in the majority of chest CT volumes used in this study because of
its position in the upper airway (Shi et al., 2006). In this study we use an
existing morphology-based airway segmentation method (Irving et al., 2009;
Lo et al., 2012). In this method, the trachea is detected in the initial slice
using location, size and circularity. Morphological closing and reconstruction
is used to enhance airway cross sections in 3 dimensions in the volume. A
threshold is then applied to the filtered airways and a region growing method
initialised from the trachea is used to segment the airway.

The Palágyi et al. (2006) iterative thinning approach is used to extract
the centreline, identify branch points and label branches from the segmented
airway. This method iteratively removes voxels from the segmentation that
do not affect the topology to extract a 1-voxel thick branching centreline. A
pruning method based on branch length and location is then used to remove
false branches. Finally, starting from the trachea, voxel connectivity of the
branching centreline is used to iteratively identify branch points and label
each branch. Branch points are found when a voxel of the centreline has
more than two 26-neighbours. The segmentation was then labelled using a
distance transform from the labelled centreline. Original voxel size was used
during skeletonisation, and voxel dimensions were taken into account when
the skeleton was converted to smooth branch centrelines in the following
steps.

Figure 3 shows the labelled airway centreline before and after pruning
of false branches and the labelled airway segmentation. Figure 4 shows the
segmentation and centreline in relation to the original CT volume. In some
cases, due to the size of the airway and scan quality, the third generation
of bronchi were not fully segmented. This does not affect our shape analy-
sis method because the Trachea, LMB, RMB and BI are used for analysis
in this study. These branches have been reported to contain 218 of all 259
compressions in a 98 patient study (Lucas et al., 2012). Improved image res-
olution and reduction in artefacts would allow further generations of bronchi
to be accurately segmented. However, the segmentation does affect labelling
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and, therefore, 39 of the 179 cases required minimal user interaction (a single
mouse click) to identify or remove a branch point from the centreline. The
interaction is minimal, and fully automated branch labelling is not the focus
for this study.

(a) Centreline before pruning (b) Centreline after pruning

(c) Labelled airway segmentation

Figure 3: Centreline identification of the a segmented airway tree using a chest CT of a
20 month patient. Red, green and blue are used to illustrate distinct airway branches.

3.2. Surface point projection

A mesh of the airway surface was used to represent each airway and
each face was labelled according to the branching structure of the airway.
This triangular surface mesh was constructed from the voxel segmentation,
and then smoothed using an implicit fairing method (Desbrun et al., 1999).
Implicit fairing uses curvature flow to remove noise and uneven edges while
preserving the mesh geometry. The smoothing was used to remove noise due
to the resolution of the CT scan. Voxel resolution has more of an impact in
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Figure 4: Rendering of a paediatric airway segmentation and branch centrelines with
intersecting slices of the original CT volume from the dataset. Red, green and blue are used
to illustrate distinct airway branches. Each branch centreline is individually smoothed.

the segmentation of paediatric airways compared to those of adults because
the smaller volume means that airways are represented by fewer voxels.

Corresponding landmarks are required to align the airways in the dataset
in order to develop the PDM. However, the airways do not have clear land-
marks between bifurcations, and instead pseudo-landmarks were projected
onto the airway surface mesh using the topological structure of the air-
way and the tubular shape of the branches. This was performed using the
following steps: the centreline was smoothed and resampled equidistantly
and pseudo-landmark points were projected orthogonally to the centreline at
these resampled centreline points.

The centreline of the airways is represented as a one-voxel thick branching
medial line. Linear interpolation between each set of neighbouring voxels was
used to achieve a more detailed representation of the centreline. A moving
average smoothing filter was applied to the interpolated points to remove
noise added to the centreline from the voxel resolution. B-Spline interpolation
of the centreline voxels is an alternative but tends to show more sensitivity
to voxel offset (as shown in Figure 5). Nevertheless, either algorithm can be
used for centreline smoothing. The branch is then resampled evenly m times
to form landmark points (pi) on the centreline.

At each resampled point (pi), the tangent T (pi) to the centreline was
estimated:
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Figure 5: A subsection of a smoothed centreline of a single branch with voxel coordinates
(black) and two examples of smoothing: a 5 voxel moving average smoothed centreline
(blue) and B-Spline interpolated centreline of degree 13 (red).

T (pi) =
p′i(t)

|p′i(t)|
(1)

p′i(t) =
pi(t+ h)− pi(t− h)

2h
(2)

where each pi(t) can be represented as a function in the vicinity of the
landmark and pi(t + h) is a small progression along the centreline. A set of
orthogonal vectors (ri) is then translated to each of the centreline points (pi)
and rotated to be orthogonal to the centreline (see Figure 6). Euler angles
(x-convention) were used to construct a rotation matrix that can be used
to map each of these orthogonal vectors onto each branch centreline. The
Euler angles are defined by three rotations (φ, θ, ψ). By setting φ = −ψ
the orthogonal vectors are mapped to any orientation of the centreline while
removing the ambiguity of rotation around the centreline.

The intersection of the vectors (rij) with the triangular surface mesh was
found using Möller and Trumbore (2005) ray/triangle intersection method.
This method determines if the vector falls inside each face when intersecting
a plane (with the plane normal defined by the face). Each face must be
checked individually. To improve the speed of the search, only faces that fall
within a local sphere of intersection are analysed. The radius of the sphere
is chosen to be larger than the branch radius, guaranteeing that the point of
intersection falls in the sphere (see Figure 8a). This representation allows a
set of corresponding surface points to be mapped onto each branch of each
segmented airway. Figure 7 and 8 show the mapping of surface points onto
the Trachea-LMB-RMB and RMB-RUL-BI regions, respectively, of example
airway segmentations.

The benefit of this representation is that the surface landmarks are based
on the most consistent features of the airway tree: the bifurcation points and
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Figure 6: Mapping landmark points to the airway surface. Each set of vectors is translated
to pi and Euler angles are used to align the central vector with the centreline tangent.
The intersection between the vectors and the airway surface is then found by ray/triangle
intersection.

(a) Airway segmentation with landmark points for
the Trachea-RUL-BI region

(b) Enlarged region showing
the point mapping to individual
branches

Figure 7: Mapping corresponding points onto the surface mesh of an airway
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(a) (b)

Figure 8: Mapping corresponding points onto the surface mesh of an airway. RMB-RUL-
BI region (with a single sphere showing the area of search for an example vector)

centreline. Statistical analysis methods could be applied directly to these
corresponding landmark points. This would simplify the method because
registration of an airway surface mesh template is not required. However, by
only representing an airway with landmark points projected from the cen-
treline, concave regions will be represented by a larger number of landmarks
and convex regions will be represented by fewer landmarks; this is not ideal.
In addition, if a large number of landmarks are chosen there is also a risk
that the orthogonal radii will overlap, due to the curvature of the centreline,
causing folding in the surface representation. As an example, the first two
projections of the Trachea in Figure 7 show a region of larger curvature. Us-
ing a small number of landmarks to align a template mesh overcomes these
challenges and a surface mesh provides a more detailed representation of the
airway.

3.3. Mesh alignment step 1: Thin-plate-spline warp

One airway from the control dataset was selected as a template and a
thin-plate-spline (TPS) warp was applied to align the template with each
airway in order to represent each airway in the dataset with a corresponding
mesh. Figure 9a shows a template warped by TPS to the RMB-RUL-BI
region of the airway.
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(a) Thin-plate spline warp by aligning land-
mark points (red) of a template mesh to the
landmark points of a region of an airway

(b) Local alignment (performed after TPS
warp) of each template vertex to the airway
surface

Figure 9: Registration of a template mesh to an airway mesh for the RMB-RUL-BI region

TPS is a method of interpolation that minimises the bending energy of
the surface (Bookstein, 1997, 1989). This method is also useful as a method
of non-rigid registration; a surface with one set of landmarks is warped to a
corresponding set of landmarks in a physically realistic way. The thin-plate
spline function in 3D that transforms a point p = (x, y, z) is given by:

fj(p) =
k∑

i=1

wijU(|p−Pi|) + a0 + axx+ ayy + azz (3)

where f(p) = [fx(p), fy(p), fz(p)] is the new position of the point (p).
Pi are the k landmark points on the shape, and wij, a0, ax, ay and az are
the weighting factors. U(r) = |r| for the 3D case, where r = p − Pi. The
weighting factors are found by writing Equation 3 as a system of linear equa-
tions H = LW , where the landmark and transformed coordinates are input
as p and f(p), respectively. The weights, W = L−1H, can then be found (as
explained in detail in Bookstein (1997)).
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3.4. Mesh alignment step 2: local alignment

The TPS warp will only be exactly aligned at the landmarks and further
matching is required to exactly align the template mesh with each target
mesh (as shown in Figure 9). The simplest method is to project the template
mesh to the closest point on the target mesh (Paulsen et al., 2002; Hutton
et al., 2003) but this can lead to unrealistic deformations and movement to
the closest point while not representing small deformations.

Approaches such as Meller and Kalender (2004) and Kaus et al. (2003)
optimize the fit based on the distance between the meshes while an additional
force preserves the mesh structure. Our method is based on these methods
but is enhanced for deformed tubular objects by adding a third term based
on the surface orientation. For each vertex (ti) on the template mesh, a force
(Fi,tot) is calculated to direct the warp. This consists of a component based
on the closest point on the object mesh (ri) (Equation 4) and an internal
forcing component is included to preserve the size of the faces. The force
is calculated by the change in the distance of each of the m neighbouring
vertices to a vertex ti from the initial distance vinitij (Equation 5). These two
forces are not enough to match to small indentations or protrusions found
in the airways. Therefore, a local inflation/deflation force is also applied
based on the normal of each vertex n̂i (calculated from the normal of the
surrounding faces). The amount of inflation and deflation is controlled by
the distance and direction of the target mesh to Fi,1 (Equation 6).

Fi,1 = ~ri − ~ti (4)

Fi,2 =
m∑
j

v̂ji(||~vji|| − ||~v init
ji ||) (5)

where ~vji = ~tj − ~ti
Fi,3 = n̂i(n̂i · Fi,1) (6)

Fi,tot = αFi,1 + βFi,2 + γFi,3 (7)

In Equation 7, the forces are weighted with α, β and γ. This procedure
is applied iteratively until stability is reached. An example mesh after this
local alignment is also shown in Figures 9b. This method enables any seg-
mented airway to be registered to a template mesh, thus achieving vertex
correspondence.
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3.5. Bifurcation region relabelling

The previous sections present a method to develop correspondence be-
tween the surface mesh of segmented airway trees. This method can be
applied to the whole airway tree or to a region of the airway. Figures 8 and 9
illustrate regional based airway analysis and this section discusses a method
to refine the branch labelling at bifurcation.

Each face in the mesh was assigned a branch label by assigning the label
of the closest voxel of the labelled skeleton. However, this labelling criterion
leads to variation in label assignment in the branch bifurcation region. Mesh
faces in a bifurcation region are assigned to the connected branches but this
assignment is biased towards branches with a smaller diameter and is influ-
enced by branch shape and orientation. This leads to irregular branch end
points which adds additional complexity to the statistical shape representa-
tion. As an example, Figure 3c shows how most of the bifurcation region is
assigned to the trachea.

To produce consistent branch labels at bifurcation, adjustments are made
to this label assignment. A face (m) is only labelled as belonging to a par-
ticular branch if:
1) The centroid (cm) of m falls between the two branch end points (creating a
well defined branch end by cutting of the branch orthogonal to the centreline
at the branch beginning and end bifurcation)

n̂j1 · n̂m1 > α and n̂j2 · n̂m2 > α (8)

2) It is near the branch centreline (ignore neighbouring branches)

|cm − ej1|+ |cm − ej2| − |ej1 − ej2| < β (9)

where ej1 and ej2 are the start and end points of the branch, and therefore
derived from the start and end positions of the extracted branch centrelines
(shown in Figure 3b). nm1, nm2 are the directions from ej1 and ej2 to cm
(see Figure 10). α and β are constants identified by qualitatively assessing
the training set as 0.2 and 25 mm respectively. m that are not assigned to a
branch are labelled as the bifurcation region. This method reduces variance
due to region selection by creating consistent edges between branch labels as
demonstrated in the branch endpoints of Figure 11 and 12 introduced later.

3.6. Airway shape features

Feature vectors are derived from both LA-PDMs of airway regions and
cross-sectional sampling of each branch in the airway tree.
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Figure 10: Relabelling the surface mesh where m is the face to be relabelled. m is labelled
according to the face’s position in relation to the branch end points ej1 and ej2.

3.6.1. LA-PDM features

Each airway is represented by a dense surface mesh. The corresponding
vertices of each airway surface mesh can be used to build a PDM of the
airway and extract a set of principal modes that represent the variation of
each airway.

Some of the variation between airways in the dataset is due to size, po-
sition and rotation, which are related to patient age and scan position, and
not of interest for the detection of airway pathology. Therefore, the airways
are first aligned by generalised Procrustes analysis (GPA). GPA is used to
iteratively align objects represented by a set of corresponding points using
translation, scaling and rotation.

Principal component analysis (PCA) is an integral part of developing
a point distribution model (PDM). PCA applies a linear transform that
projects the vertices onto an uncorrelated space and can be used to ex-
tract relevant features (Cootes et al., 1995). PCA modes are ordered by
the variance and, therefore, by selecting the subset of the modes with the
most variance, each shape can be represented by a feature vector of lower
dimensionality than the input feature vector.

As input into PCA, each object is represented as a 3n dimensional stacked
vector of mesh vertices where n is the number of vertices in the mesh; for the
Trachea-RMB-LMB regions n ≈ 1700. Therefore, the GPA aligned 3D land-
mark points of the object x = [(x1, y1, z1)...(xn, yn, zn)] are now represented
as a single vector xi = (x1, y1, z1, ..., xn, yn, zn)T for object i.

PCA is computed from the covariance matrix and it can be shown that
the eigenvectors (Φ) of the covariance matrix can be used to project an airway
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(x) into uncorrelated space, where the dimensions of the uncorrelated space
are defined by the orthogonal eigenvectors. This projection is:

b = ΦT (x− x̄) (10)

where b is the representation of the airway in the new space. Therefore,
an airway can be represented in terms of the mean shape and a displacement
along each principal component by b:

x ≈ x̄ + Φb (11)

Of particular interest is that PCA results in an ordered set of eigenvectors,
where the contribution of the variance of each eigenvector (φi) is represented
by the eigenvalues (λi). A shape can, therefore, be approximated by a set
of m eigenvectors Φ = (φ1|φ2|...|φm) and b = (b1, ..., bm). This means that
a dense surface mesh model of a shape is reduced to a much shorter feature
vector represented in terms of the principal components of shape variation.

A common way of choosing the number of principal components (eigen-
vectors) that will represent the shapes is based on the amount of variance
they represent. Typical choices range from 90% to 99.5% of the variance (van
Ginneken et al., 2002). The variance represented by the first m eigenvectors
can be calculated from the sum of the first m eigenvalues over the sum of all
3n eigenvalues:

f =
m∑
i=1

λi

/
3n∑
i=1

λi (12)

Each object is now represented by a vector b of length m. These vectors
represent the object shape (with an accuracy of up to the chosen variance f)
and can be used to distinguish and classify airway shapes.

3.6.2. Local region analysis

Variation in airway shape could potentially be modelled at a number
of levels from the variation in a single cross-section of a branch to global
variation of the entire airway. In this study, local regions of the airway are
modelled individually, where each region consists of a parent branch, the bi-
furcation region and two child branches. Modelling each branch individually
is not as effective because variation in the position of a branch relative to
neighbouring branches is important; lymphadenopathy can lead to branch
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deformation as well as stenosis (an example of tracheal displacement by lym-
phadenopathy is presented in (Andronikou and Wieselthaler, 2004)).

Alternatively, shape models could be applied to the entire airway. How-
ever, PCA is a linear projection to a lower dimensional space and with each
additional generation of a tree structure the variation of the airways be-
comes increasingly non-linear. While there are benefits to modelling the
relationship between parent and child branches, there is limited value to
modelling the relationship between the shape changes of second order con-
nected branches. There are non-linear formulations of PCA (including Kernel
PCA in (Schlkopf et al., 1997)), but modelling the airway as a set of 3-branch
structures using PCA seems the most promising approach.

Therefore, this method creates a number PDMs of the airway for vari-
ation 3-branch regions. Each 3-branch region overlaps the previous region.
For example, the RMB is represented in both the trachea-RMB-LMB and
RMB-RUL-BI regions. These regions are automatically identified, a point
distribution model is built from the dataset and each 3-branch region is as-
signed a feature vector (b) that can be used for classification.

In paediatric pulmonary TB, the most common locations of lymphadenopa-
thy are subcarinal (90%), hila (85%), anterior mediastinum (79%) and para-
tracheal (63%) (Andronikou et al., 2004). Bronchial compression caused by
lymphadenopathy is most apparent in the BI, LMB, RMB and trachea (An-
dronikou et al., 2004; Lucas et al., 2012). Therefore for identifying TB, two
regions were modelled (trachea-RMB-LMB and RMB-RUL-BI). This could
be extended to the rest of the airway if useful for modelling additional airway
pathology. The model is aligned using the branching structure and extracted
mesh, and because three branches are modelled at any one time, no more
complexity is added by analysing further generations.

3.6.3. Radius based features as an alternative to LA-PDM

LA-PDM provides a solution to a novel application and there are no
comparison methods available. However, manual measurements of airway
diameter are used clinically as an indicator of airway involvement and are
generally assessed in terms of proximal and distal involvement in each bronchi
(du Plessis et al., 2009). The method that we have proposed in the previous
sections can implicitly measure airway cross-sections as part of the landmark
placement step (Section 3.2). Therefore, as a more conventional comparison
to the LA-PDM, feature vectors based on cross-sectional measurements of
the airway bronchi were also derived. As discussed in Section 3.2, vectors
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orthogonal to the branch centreline were projected to the surface and the
intersection between the mesh and the vector was found. This provided
radius measurements in four orthogonal directions for n equidistant samples
along each branch. In this comparison we divide each bronchi into three
regions: proximal, middle and distal and derive a single mean diameter (d̄)
for each region:

d̄ =
1

2(q − p+ 1)

q∑
i=p

4∑
j=1

||rij|| (13)

where p and q are the scalars defining the start and end points of the re-
gion from the n centreline samples in the branch, and rij is the radius at
position i and orientation j (as illustrated in Figure 6). These features are
normalised across airways by the branch length (l). As with the PDM de-
rived features, the same 3-branch regions were used for this method, and
therefore, 3 branches each with 3 mean region diameters, resulting in 9 fea-
tures, were used for classification, and compared to classification using the
LA-PDM derived features.

Linear discriminant analysis is used to classify these airway regions using
these derived features with leave-one-out cross validation.

4. Application of the LA-PDM to Clinical Cases

This section describes the application of the LA-PDM method to the
paediatric Chest CT dataset.

4.1. Paediatric Chest CT Cases

A set of 89 paediatric non-TB and TB cases were acquired in 2010
from Tygerberg Hospital (South Africa) and Great Ormond Street Hospi-
tal (U.K.). These cases were used to develop the method and determine the
parameters used in the algorithm. In 2012, a dataset of 90 patients with
and without TB were all collected at Tygerberg Hospital. These were previ-
ously unseen and used only for evaluation in this study. Several cases with
artefacts from tubes or severe movement were excluded from the study.

The test dataset included 42 non-TB patients with a mean age of 3.1±3.8
years and 48 TB patients with a mean age of 2.4± 2.8 years. Patients under
5 years have more malleable airways and are, therefore, more predisposed
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to airway deformation. These images were acquired using the Siemens SO-
MATOM Sensation 40 and the Siemens SOMATOM Emotion 6. The pixel
size in each slice varied from 0.21 - 0.54mm and the slice thickness varied
from 0.6 to 1.5 mm.

Patients with suspected TB only undergo a CT scan when there are signs
or symptoms of airway involvement (du Plessis et al., 2009) and therefore, all
TB cases in this dataset have suspected airway involvement. Suspected air-
way involvement is diagnosed from signs of obstruction of the large airways
including stridor and wheezing or tracheal cough, or radiologically. Further-
more, all TB cases used in this study were classified as having probable or
definite TB, where definite is culture confirmed and probable is not culture
confirmed but combines clinical grounds, radiological assessment, Mantoux
skin test and contact history.

In order for airway involvement to be compared to controls, a pulmonolo-
gist selected cases without airway involvement or tuberculosis. These cases
include children with the following conditions: parenchymal lung disease such
as interstitial lung disease, congenital lung malformations which affect the
parenchymal tissue and not the airways; suspected lung metastases; and in-
fective conditions other than TB. These will include cases of bronchiectasis,
cystic fibrosis and pleural disease.

4.2. LA-PDM implementation

This section provides additional details on the experimental set-up and
parameter settings.

For landmark generation, linear interpolation between the centreline voxel
coordinates was performed and 100 points were sampled between each voxel.
This was chosen to be suitably dense, from which, to derive resampled equally
spaced landmark points. The centreline was then smoothed using a moving
average. Five voxels were used to calculate the moving average at each point
as this removed the appearance of individual voxel noise. Therefore, 500
points were used to calculate the smoothed centreline from the interpolated
points.

A single case with no visible pathology (from the training set) was used
as the template for registration. To improve computational efficiency, the
airway mesh was reduced to 20% of the original number of vertices while
maintaining vertex-to-vertex correspondence using a surface simplification
method (Garland and Heckbert, 1997). Therefore, the Trachea-RMB-LMB
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region was represented by 3286 faces and 1733 vertices, and the RMB-RUL-
BI regions were represented by 1093 faces and 618 vertices.

The number of resampled centreline points used to generate surface land-
mark points were: Trachea, 5; LMB, 5; RMB, 2; BI, 3 and RUL, 3. These
were chosen to provide similar spacing for each branch. Each centreline
point was used to generate four surface landmarks, resulting in 48 and 32
landmarks used to represent the Trachea-LMB-RMB and RMB-RUL-BI re-
gions, respectively (as shown in Figure 7 and 8), and were used to register
the template mesh. These values were chosen so that the landmarks were
suitably far apart that the orthogonal radii never intersected – which would
cause folding in the surface representation. The number of resampled centre-
line points used, for radius based measurements, was [100 100 50] (number
of points in each branch of a 3-branch section). At each of these equidistant
points, 4 points were projected to the surface.

The accuracy of the mesh alignment was evaluated by comparing volumes
generated from the template mesh and airway region of interest using the
Jaccard distance (the complement of the Jaccard index). The proportion of
error in the registration (Vdif ) and a opening of the error using a 6-connected
structuring element (Vopen) as a function of α, γ and β (Equation 7) were used
for evaluation using a grid search. The opening removes single voxel errors
that may be introduced during re-voxelisation of the mesh for comparison,
and, therefore, Vopen represents larger local errors that have more impact on
accuracy. For stability, only α < 1.0 and γ < 1.0 were considered when
choosing optimal values. A step size of 0.1 for α and γ, and β = 0.5, 1.0, 1.5
were used in the search. Optimal values were found to be α = 0.1 and γ = 0.8
with a mean Vdif = 0.021 ± 0.009 and Vopen = 0.0022 ± 0.0049. Just using
closest point mapping (Equation 4), the errors were Vdif = 0.029±0.019 and
Vopen = 0.009 ± 0.015. Using closest point mapping and the mesh structure
term (Equations 4 and 5), the errors were Vdif = 0.027 ± 0.018 and Vopen =
0.006±0.011. Therefore, including the inflation/deflation term improves the
registration of the template and reduces the variance in the accuracy of the fit.
This is particularly noticeable for Vopen (larger local errors) and agrees with
qualitative observations that adding the third term improves the registration
for narrowed and stenosed branches. This optimisation could be performed
on an individual basis to choose parameters for each case. However, in this
work the same fit parameters are used throughout the dataset.

Figure 11 and 12 show alignment of a template mesh to the trachea-RMB-
LMB and RMB-RUL-BI regions of 24 example cases from the 90 patient
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test dataset. These cases are used to illustrate the typical variation found
in the dataset and the template mesh alignment (the darker region is the
aligned template mesh). As can be seen, differences between cases with
airway involvement and controls are sometimes not clearly apparent.
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Figure 11: Example cases of registration of the template mesh to the trachea-RMB-LMB
region. The first two rows are patients with airway involvement and the remainder are
controls.

4.3. Model Variation and feature extraction

PCA modes of variation were extracted from the PDM model. The varia-
tion of the first 5 PCA modes for the trachea-RMB-LMB and RMB-RUL-BI
regions are shown in Figure 13 and Figure 14. The centre column shows the
mean airway (x̄) with variation (x = x̄ ± Φibi). Using bi = ±3

√
λi shows

the variation of one mode three standard deviations from the mean in the
dataset (Cootes et al., 1995). These principal components exhibit a range
of changes including branch narrowing, local stenosis, deformation, length
and angular changes. These modes also include variation that is considered
pathological such as deformation and stenosis of branches. For example, the
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Figure 12: Example cases of registration to the template mesh to the RMB-RUL-BI region.
The first two rows are patients with airway involvement and the remainder are controls.
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fifth mode of Figure 13 shows central narrowing of the LMB while the first
and second modes of Figure 14 show types of region based narrowing. Note
that due to the perspective some of the 3D variation is not visible in the
figures.

Figure 15 shows two example airway segmentations from a TB patient
and control. In this example there is narrowing of the LMB and BI for
the TB case. The representation of the airway variation in this example
by the LA-PDM is shown later in Figure 21. Small differences are also
visible between the 11 component representation of the trachea-LMB-RMB
region (dark blue) and the original airways (light blue). These differences are
represented by the remainder of the principal components that are excluded
from the model.

4.4. Model evaluation

Before analysis of the classification accuracy, the characteristics and per-
formance of the point distribution model were analysed. Measures of com-
pactness, generalisation and specificity, that are outlined by Styner et al.
(2003), were used to evaluate the model.

A compact model can represent the variance within the dataset with only
a few parameters. The variance can be calculated as a function of the number
of shape parameters (modes of variation).

The model generalisation represents a model’s ability to represent unseen
cases (Styner et al., 2003). This was evaluated using leave-one-out recon-
struction of the dataset. For each case in the dataset, the PDM was built
without the case, and used to reconstruct the case using M modes of varia-
tion. The mean absolute distance (MAD)1 was then used to approximate the
error of the PDM representation of each case. The mean and standard de-
viation of the MAD values for the entire dataset was calculated. Confidence
intervals were found by the Central Limit Theorem.

Model specificity evaluates the ability of the model to only generate
shapes that are similar to those found in the dataset (Styner et al., 2003).
A thousand new instances of the feature vector bi were generated for each
PDM. Monte Carlo simulations were used to randomly generate bi from a
multivariate normal distribution with standard deviation σi =

√
λi and mean

1The mean absolute distance is defined as the mean distance between the vertices of
the model representation and the vertices of the corresponding case (Styner et al., 2003)
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Figure 13: Modes of variation 1-5 for the trachea-LMB-RMB (bi = 0 is the mean model
and bi = ±3

√
λi represents the shape 3 standard deviations along each mode). Dark

regions in the figures show the local PDM model and the light region is an example airway
that is registered to the model to aid visualisation.
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Figure 14: Modes of variation 1-5 of the RMB-RUL-BI (bi = 0 is the mean model and
bi = ±3

√
λi represents the shape 3 standard deviations along each mode)
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(a) non-TB case (b) TB case

Figure 15: Example airways from the non-TB and TB datasets with overlaid 11 component
representation of the first 3 branches

µi = 0 (Hu et al., 2010). MAD from each instance to each case in the dataset
was calculated, and the minimum distance was recorded, which represents to
closeness of the instance to the nearest case in the dataset. The mean and
standard deviation of the minimum MAD distances were calculated.

PCA produces modes of variation that are ordered by the contribution
to the total variance within the dataset. Figure 16 shows the contribution
of each mode to the total variance. In both cases approximately 90% of the
airway variation in the dataset is represented by the first 11 modes.
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Figure 16: The proportion of the total variance in the dataset that is represented by n
principal modes for the Trachea-LMB-RMB and RMB-RUL-BI regions. Principal modes
are ordered by variance and, therefore, higher modes will make smaller contributions. In
this dataset, the first 11 modes represent ≈ 90% of the variation.

The model generalisation and model specificity for both PDMs are shown
in Figure 17 as a function of the number of modes of variation (M). As ex-
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pected the model generalisation – the ability of the model to represent unseen
cases– performs better (decreases) with increasing number of modes (using
11 modes G(M) ≈ 0.5 mm). Also as expected, the specificity (the ability of
the model to only represent similar cases) performs worse (increases) with in-
creasing number of modes. The Trachea-LMB-RMB model outperforms the
RMB-RUL-BI model both in terms of generalisation and specificity. This is
probably because there is less variability in the latter region.
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(a) Generalisation of the model
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Figure 17: Generalisation G(M) and specificity S(M) of the model with confidence inter-
vals, as a function of the number of modes (M), for the Trachea-LMB-RMB and RMB-
RUL-BI regions.
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5. Detection of cases with airway abnormalities

The CAD pipeline that we have developed is able to detect airway defor-
mation related to paediatric TB. The following steps are used for detection
of an unseen case: a chest CT of a paediatric patient with suspected TB
is acquired, the airway is automatically segmented, the airway centreline
and branch points are identified, and landmarks are placed on the airway
surface using the methods described in Section 3.1 and 3.2. The airway
template mesh for each 3-branch region is then registered to the segmented
airway surface to develop vertex to vertex correspondence with the training
set (Sections 3.3 and 3.4). The point distribution model – created using the
training set – is then used to project the mesh vertices of the test case, and
the first 11 modes of variation are extracted as features. A classifier, trained
on features from the training set, is then used to classify each 3-branch re-
gion of the airways. This allows automatic detection of airway abnormality
in each 3-branch region based on variation of the shape of each bronchi as
well as variation with respect to neighbouring bronchi.

Evaluation was performed using leave-one-out cross validation (LOOCV)
on the test set where the classifier was tested on each case and trained on
the remainder over the entire dataset. The receiver-operating-characteristic
(ROC) was used to evaluate accuracy. Area-under-the-ROC curve (AUC)
provided a single performance measure. Confidence intervals were used to
assess the confidence in both the AUC and ROC curves, and were calculated
using bootstrapping with 5000 replications. Bootstrapping was performed
using the bias corrected and accelerated (BCa) method as this is the preferred
approach (Altman et al., 2005).

Before classification, Fisher mapping was used as a useful visualisation of
the linear separability between TB and non-TB cases for a set of features.
Figure 18 shows that separability of test cases with and without airway in-
volvement can be achieved by 11 principal modes of variation (90% of the
dataset variation) using Fisher mapping. Fisher mapping is an affine map-
ping that maximises the ratio of the inter/intra class variability (van der
Heijden et al., 2004).

The key outcome of this method is detection of airway abnormality in
unseen cases. Figure 19 shows ROC curves, for the two regions of inter-
est, distinguishing cases with airway involvement from controls, using linear
discriminant analysis (LDA) with leave-one-out cross validation on the test
set. 95% confidence intervals for the sensitivity and AUC of the ROCs were
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Figure 18: Fisher mapping of first 10 modes of dataset versus the 11th mode on the test
set

estimated using bootstrap BCa with 1000 replications. The figure shows a
comparison between classification using the LA-PDM derived features that
we introduce and classification using features derived from mean airway cross-
section. Using the LA-PDM achieved an AUC of 0.87(0.77 − 0.94) on the
Trachea-RMB-LMB region (Figure 19a). Figure 19b shows that second order
bronchi can also play a role in TB detection with an AUC of 0.81(0.68−0.90).
Using the alternative set of features derived from mean airway cross-section
an AUC of 0.72(0.59−0.83) was obtained for the first region but classification
failed on the second region 0.59(0.46− 0.73).

The significance of the AUC improvement was calculated using bootstrap-
ping (BCa with 5000 replications) with a two-tailed Monte Carlo technique.
Assuming a significance level of α = 5%, the PDM derived features were
significantly better than the average diameter derived features for both the
Trachea-RMB-LMB (p=0.024) and RMB-RUL-BI regions (p=0.013).

This suggests that branch diameter is not enough for the detection of
airway shape variation (due to paediatric TB), and that LA-PDM can con-
siderably improve detection by accounting for variation in regions of the
airway tree. The flexibility of the PDM to model variation automatically is
also a considerable advantage.

So far we have shown the effectiveness of LA-PDM for the detection of
airway involvement in unseen cases. However, analysis of more specific in-
volvement could also be obtained from individual modes of variation and
identifying the modes that have the most impact on classification. This
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Figure 19: ROC curves for accuracy of detection of cases with airway involvement using
LA-PDM and mean airway cross section features

method used 11 principal components, representing 90% of the variation for
classification. Figure 20 considers the impact of the number of components
on the accuracy of detecting airway involvement and shows the key modes
of variation that play a role in distinguishing airway involvement from nor-
mal variation. The AUC was calculated using LOOCV for each number of
features on the validation set.

Interesting to note, is that large improvements in performance are seen
when adding certain components while others offer no improvement. The
modes that allow airway involvement to be identified include the modes 1,
2, 5 and 10 for the trachea-RMB-LMB region and modes 1, 6, 7, 8, 11
and 14. Other modes may also contribute to the classification but only
improve the classification when used in combination with one of the modes
described above. Figure 20b shows that the AUC could be improved further
if more modes than those contributing to the 90% variance were included.
The plots also show that adding certain modes can worsen the performance
of the classifier; fitting a classifier to a feature that does not contribute to
the distinguishing the datasets has the potential to be penalised by the cross
validation.

This section shows that accurate classification of disease with airway in-
volvement can be performed automatically. However, these modes could have
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Figure 20: AUC as a function of number of modes used in the classification.

more use beyond a automatic classification of the airway. By identifying the
modes that are most important for detection of airway involvement, these
modes could be used to illustrate the specific type of abnormal airway in-
volvement to the viewer. Figure 21 illustrates this point by including the key
modes from the two regions along with the parameters of the example airway
shown in Figure 15b. The parameters of the example airway are plotted in
terms of the standard deviation of each mode. The Figures show that the
largest deviations (from the population mean) in the example have clinical
importance because they illustrate the types of airway pathology, which, in
this example, include narrowing of the bronchus-intermedius (R7) as well as
local stenosis of the LMB (T10).

This software was written using a combination of Matlab R2011a and
C++. C++ was incorporated to improve the speed at various bottlenecks.
The software was evaluated on a system with a 2.80GHz Intel quad-core pro-
cessor and 6GB of RAM. The mean time for segmentation of each airway
was 168 ± 57s. Extraction of the centreline, pruning and branch point de-
tection for each airway took a mean time of 22± 18s. Once each airway was
segmented and the structure extracted, then mesh generation, registration,
training and classification of the entire 179 patient dataset took 1162s on a
single run.
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Figure 21: The example airway (Fig. 15b) is shown in terms of the most important modes
for classification (from Fig. 20) where R represents the modes from the RMB-RUL-BI
and T is trachea-RMB-LMB. R1, R7 and T10 show the largest deviation from the mean
airway for this case and, therefore, the types of pathology found in this airway, including
narrowing of the RMB and stenosis of the LMB.

6. Discussion

The LA-PDM method introduced in this paper can accurately distinguish
between airway involvement (from paediatric pulmonary TB) and normal
airways by examining regions of the airway likely to be affected by lym-
phadenopathy (AUC of 0.87(0.77 − 0.94) and 0.81(0.68 − 0.90)). The LA-
PDM derived features show more promise than features derived from the
airway diameter, which is probably due to the ability to represent more com-
plex variation in feature space. However, we are not aware of any previous
studies that model the effect of lymphadenopathy on airway changes and
are, therefore, not able to compare to previous methods. Instead we propose
these results as a benchmark for future airway shape analysis 2.

A training set of 89 patients was used during development of the method
and determination of landmark point and registration methods. Because

2Supplementary data is available at:
http://www.birving.com/data/1/ShapeModel/indexairwayshape.html
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the training set was acquired from a number of hospitals, evaluation was
performed on the previously unseen 90 patient test set (from a single hospital)
using leave-one-out cross validation.

The classification based on shape aims to distinguish pathological shape
variation from inter-patient variation, and variation due to age and breathing
artefacts. The standard deviation of the patients’ age is approximately 3
years. With a larger dataset, it would be possible to divide the dataset into
age groups and possibly improve the performance by removing noise caused
by age variation. However, studies have shown that the proportions of the
airway do not change considerably with age in children (Masters et al., 2006).
Breathing artefacts could also add noise to shape-based airway classification
as it is not possible to perform a breath hold scan on young patients. The
bronchi lengthen and dilate during inspiration but these changes are expected
to be distinguishable from TB pathology. The accuracy of the classifier also
indicates that breathing variation does not have a considerable effect. With
newer 128 and even 256 slice CT, the whole chest volume could be imaged
in less than a second, eliminating motion.

These results show that the LA-PDM has promise for detecting airway
involvement in chest CT examinations and, thus, speeding up CT assess-
ment. As demonstrated in the results section, the methods can also be used
to provide key features of each airway being examined, providing information
on the type of deformation from the modes of variation that each airway ex-
hibits. If these key modes of variation were linked to the location or locations
of lymphadenopathy then further information could be derived from shape
changes.

This method could be used to provide additional automated analysis and
visualisation for any patient undergoing a CT examination and might be
applied to other diseases affecting the airway. Bronchoscopy is currently the
“gold standard” for evaluating airway stenosis and deformation but is an
invasive procedure. CT with techniques such as virtual bronchoscopy and
virtual rendering, shows potential as an alternative to bronchoscopy. The
method presented here has the potential to improve and automate analysis
of airway shape deformation. Initial steps to extending the LA-PDM to X-
ray examinations for routine X-ray screening are also being assessed (Irving
et al., 2013).

Finally, CT scanners are increasingly being deployed, including in areas
with a high TB prevalence such as South Africa. These are often not manned
by radiologists or by junior trainees due to the shortage of radiologists in de-
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veloping countries. Telereading is not always the solution because radiologists
from low prevalence regions are not familiar with all the features of TB in
children because of the limited number of cases in their countries. So there
is a definite role for computer assisted detection in CT, and furthermore for
screening in radiography.
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