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Abstract. Clinical signs of paediatric pulmonary tuberculosis (TB) in-
clude stenosis and deformation of the airways. This paper presents two
methods to analyse airway shape and detect airway pathology from CT
images. Features were extracted using (1) the principal components of
the airway surface mesh and (2) branch radius and orientation features.
These methods were applied to a dataset of 61 TB and non-TB pae-
diatric patients. Nested cross-validation of the support vector classifier
found the sensitivity of detecting TB to be 86% and a specificity of 91%
for the first 10 PCA modes while radius based features had a sensitiv-
ity of 86% and a specificity of 94%. These methods show the potential
of computer assisted detection of TB and other airway pathology from
airway shape deformation.

1 Introduction

The prevalence of tuberculosis (TB) remains high in many developing countries
while the accuracy of paediatric TB detection is low, and a combination of
tests including imaging is used. Automated airway analysis has the potential
to improve the detection of airway pathology such as TB. A common sign of
primary TB in children is airway deformation caused by lymphadenopathy [1].
This can take the form of displacement and stenosis of airway branches, and
widening of the carinal angle [1]. Hila, mediastinal, subcarinal and paratracheal
lymph nodes are commonly affected and the most common sites for compression
are: the trachea, left main bronchus (LMB), right main bronchus (RMB) and
bronchus intermedius (BI) [1]. This sign is more sensitive in children because the
airways are more malleable and primary TB tends to affect the lymph nodes.
Lymphadenopathy can also indicate other pathology but is useful for detecting
TB when used in conjunction with other tests and is likely to indicate TB in
areas with a high TB prevalence.

Paediatric airways are considerably smaller than those of adult patients,
which means a lower resolution using the same voxel size, and fewer branches can
be identified. Movement artefacts are also more likely because it is not possible
to perform a breath hold scan on infants [10].
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Point distribution models (PDM) are a common method of modelling shape
variation. Anatomical landmarks or a mesh are used to represent a shape and the
variation in position of corresponding points is calculated. Principal component
analysis (PCA) can be applied to the PDM to reduce the dimensionality of the
representation, identifying the principal modes of variation. These techniques
have been applied successfully in a number of cases including facial morphology
[5]. However, very little research has focussed on airway shape modelling. A
previous study developing a shape model of the airways focussed on patient
specific models and required manual interaction [4].

An alternative and more intuitive approach is to use features that correspond
directly to clinical observations but this requires more background knowledge.
In this paper we present a complete system for analysing pathological airway
shape variation and compare two approaches for identifying TB cases: one using
features generated using the principal modes of variation of a surface mesh, and
another using features based on the branch radius and orientation. We test both
on a dataset of TB and non-TB cases. Contributions of this work include a
method to generate a shape model of normal and pathological airway variation
(the authors are not aware of any previous method to model airway pathology
and particularly to distinguish between TB and non-TB datasets) and methods
focussed on paediatric datasets. Additional contributions include a novel method
for automatically generating airway landmarks based on the airway topology and
centreline, extension of mesh-warping to suit stenosed airway shape variation and
the training of a classifier on airway shape data.

2 Method

An automated airway segmentation approach was used and the centreline and
bifurcation points extracted. Corresponding landmark points were generated and
a template mesh was warped to each airway. A shape model was then developed
using the principal modes of the corresponding vertices. Cross-section diameter
measurements were made for each branch and used to generate the second feature
set.

2.1 Dataset and airway extraction

The dataset used in this study consists of TB and non-TB cases. 29 chest CT
scans of paediatric patients diagnosed with definite or probable TB from a pos-
itive culture, or bronchoscopy and CT findings were acquired from Tygerberg
Hospital in South Africa (mean age 22 ± 26 months) and 32 chest CT scans of
paediatric patients with a non-TB diagnosis were acquired from Gt Ormond St
Hospital, London (mean age 38±22 months). Voxel size in the axial plane ranged
from 0.3 - 0.5 mm and slice thickness 0.7 - 1 mm. 13 cases with completely ob-
structed branches were previously manually excluded from the dataset because
these cases can be easily identified and are not of interest for building a shape



model. The age difference between the groups is within one standard deviation
and age does not influence airway proportions in children [8].

The airways were segmented using an existing method [6] . This method uses
morphological closing and reconstruction to enhance possible airway locations
in the axial, coronal and sagittal directions. A region growing method, seeded
at the trachea, is then used to extract the airway region. The structure of the
airways is found using centreline extraction, branch point detection and branch
labelling. Palágyi et al. [9]’s skeletonisation method is used for the extraction
of the centreline because of its previous application to the airways. This is an
iterative thinning approach, where each surface voxel is analysed in terms of
orientation and connectivity and simple points are iteratively removed.

False branching can occur because of surface deformation (particularly when
pathology is present) and, therefore, branch pruning is required. We found that
false branches connected to the trachea, LMB and RMB can be longer than true
branches further down the tree, and false branches may bifurcate. Therefore,
a multilevel pruning system was developed that removed branches less than
a specified length (l) and removed larger false branches associated with the
primary branches and smaller false branches associated with later generations.
Three pruned trees (Tl1 , Tl2 , Tl3) were created with pruning l1 > l2 > l3. A final
tree was constructed from Tl1 for the trachea, Tl2 for the LMB and RMB and
from Tl3 for the remaining branches. A one voxel thick centre line was used to
identify the branching structure, shown in Figure 1: a branch point was defined
as a point with three neighbours in the 3x3x3 surrounding region.

Fig. 1. Paediatric airway segmentation and branch-point identification. The two cases
on the left show signs of TB while the others are non-TB cases.

2.2 Corresponding surface point generation and mesh alignment

Surface point correspondence is required to derive features from a shape model
while diameter based features require only regular sampling of the branch.
Branch points are the only major anatomical landmarks and, therefore, cor-
responding points were generated by calculating the intersection between the
surface and vectors orthogonal to the smoothed centreline at equidistant po-
sitions along each branch (Figure 2). The generated points take into account
branch topology, medial line curvature and surface deformation. The analysis



was performed on the trachea, RMB and LMB (commonly deformed by lym-
phadenopathy).

Fig. 2. Surface point placement using the centreline and bifurcation points.

As discussed earlier, two sets of features are being considered, the principal
modes of the surface deformation and branch radius/direction based features.
The surface points were used to calculate the two orthogonal diameters at each
cross section along each branch. These points were generated from 60 equidistant
points on the medial line of the trachea, 50 along the LMB and 30 along the
RMB. A subset of the corresponding points (generated from 5 equidistant points
on the Trachea and LMB, and 2 on the RMB) were used to warp a mesh onto
each airway using Thin Plate Spline (TPS) warp. TPS warping is a common
method of aligning objects using a set of landmark points [5]. TPS attempts to
perform realistic deformation by minimising the bending energy [2]. The TPS
function that minimises the energy is:

fj(Pj) =

k∑
i=1

wijU(Pj − Pij) + a0 + axx+ ayy + azz (1)

where f is the new position of the point and fj is a component of f, j ∈ (x, y, z),
P are the landmark points on the shape and wij are the weighting factors. wij

can be found from the corresponding landmark points.
Further matching is required so that the template mesh is aligned with each

target mesh (as shown in Figure 3). The simplest method is to project the
template mesh to the closest point on the target mesh [5] but this can lead to
unrealistic deformation while not covering small deformations. Figure 4 shows
this mesh misalignment because of narrow sections caused by stenosis and the
proposed solution.

Kaus et al [7] optimise the fit based on the distance between the meshes
while an additional force preserves the mesh structure. We add a third term
based on surface orientation. For each vertex on the template mesh (ti), a force
(Fi,tot) is calculated to direct the warp. The closest point (ri) on the object
mesh component is included to align the meshes (Eqn 2) and an internal forcing
component is included to preserve the size of the faces (change in the distance



(a) Template im-
age

(b) Case to be
matched

(c) TPS warp

Fig. 3. TPS warp using landmarks on the trachea, LMB and RMB.

(a) Matching to the closest
point

(b) Meshing procedure using
F1, F2 and F3

Fig. 4. Mesh matching.

of each of the p neighbouring vertices to a vertex ti from the initial distance v0j)
(Eqn 3). An expansion/contraction force is also added, based on the normal of
each vertex n̂i (calculated from the normal of the surrounding faces) controlled
by the distance and direction of the target mesh to Fi,1 (Eqn 4). This improves
performance for small surface indentations/protrusions associated with stenosis.

Fi,1 = ri − ti nearest point ext. force (2)

Fi,2 =

p∑
j

v̂j(||vj || − ||v0j ||) where vj = tj − ti internal force (3)

Fi,3 = n̂i(n̂i · Fi,1) normal ext. force (4)

Fi,tot = αFi,1 + βFi,2 + γFi,3 (5)

In Equation 5, the forces are weighted with α, β and γ. This procedure is
applied iteratively until stability is reached.

2.3 Feature extraction and classification

Each shape is represented as a 3n dimensional vector where n is the number of
vertices in the mesh; n ≈ 1500 was used in this study. Each shape was aligned



using Generalised Procrustes analysis and PCA was applied to reduce the di-
mensionality and obtain a set of features for classification. PCA applies a lin-
ear transform that projects the PDM onto an uncorrelated space and can be
used to extract relevant features [3]. PCA modes are ordered by the variance
and, therefore, can be used to reduce the dimensionality of the feature vec-
tor. For PCA, it can be shown that the eigenvectors of the covariance matrix∑

= XXT (where each column of X is a 3n vector for each airway) can be
used to project the dataset into the uncorrelated space (b) represented by the
eigenvectors bbb = ΦT (xxx− x̄̄x̄x) where the projection matrix (ΦT ) is the transpose of
the eigenvector matrix (Φ). Therefore, a measurement vector xxx = x̄̄x̄x+Φbbb can be
represented in terms of the mean and displacement along each mode [3].

Three radius based features were calculated for each branch: the maximum
ratio of the orthogonal diameters for each branch

(
max

(
d1
d2

))
, the ratio between

the branch length and average branch diameter
(
dave

l

)
and the maximum ratio

of local minima and neighbouring local maxima of the diameter as a function
of position on the branch

(
lmax1+lmax2

2lmin

)
. These features, based on advice from

our clinical partners, were used as indicators of branch circularity, thickness and
local stenosis, and were calculated for the trachea, RMB and LMB. The carinal
angle was also calculated for each airway by fitting a line to the first third of
the RMB and LMB and calculating the angle from bifurcation. All features were
normalised.

Once a set of features was found to represent each airway in the dataset, a
classifier was trained to distinguish between TB and non-TB cases. A Support
Vector Machine (SVM) was chosen as the classifier because of its suitability for
small datasets and the PRtools implementation of SVM was used. Leave-one-out
cross validation (LOOCV) and nested CV were used to evaluate the classifier.

3 Results

Parameters for the mesh warp α, β and γ were determined by comparing the
volume generated from both the template mesh and the original mesh (Vdif =
(Vtemp \ Vcase) ∪ (Vcase \ Vtemp). In order to focus on local errors instead of
differences due to mesh face sizes, a morphological closing was applied (Vopen =
Vdif ◦K where K is 6-connected kernel) in order to remove 1-voxel thick errors
but retain larger local errors. Optimum parameters are around α = 0.2 and
γ = 1, where proportion of general error (without closing) is less than 0.022 and
local error (with closing) is less than 0.002. Without the expansion force (γ = 0)
then the minimum errors are 0.05 and 0.02 respectively. Fixed parameters were
used for the whole dataset but could be chosen for each individual airway.

The SVM classifier was trained and tested on the two sets of features. Clas-
sification using PCA features were performed using the first 10 modes which
represented 90% of the shape variation. Figure 5 shows the mean and variation
from −3

√
λi to 3

√
λi along the first 4 modes. Classification was also performed

on the 10 radius and orientation based features. This classifier was optimised by
adjusting the “trade-off parameter” C (between 5 and 500) and the degree of the



polynomial kernel (between 1 and 13) while running LOOCV for each choice.
These values were chosen to cover a reasonable range of parameters but further
optimisation could be performed. LOOCV was used because the dataset was
too small to divide into a testing and training set. However, adjusting the SVM
parameters with LOOCV allows the best classifier to be selected but can lead
to a biased measure of accuracy. Therefore, to determine an unbiased sensitivity
and specificity without an independent training set, nested CV was used [11].
Nested CV includes a second LOOCV loop with parameter optimisation inside
the full LOOCV loop and results have been shown to be close to that of an
independent testing set [11]. Using LOOCV, the classifiers performed the same
and parameters of C=100 and 3 and polynomial degree of 3 and 1 were found for
the PCA and radius based classifiers, respectively (Table 1). The radius based
features performed slightly better when tested using nested CV (6 compared to
7 misclassified out of 61). The software was written in Matlab and C++ and
tested on a 2.0 GHz quad-core processor. Generation of features from a seg-
mented dataset and cross validation: ≈700s for the PCA based feature vector
and ≈1200s for the radius based feature vector.

Table 1. Sensitivity and specificity using (1) the PCA and (2) the radius and orienta-
tion based feature set with LOOCV and Nested CV.

LOOCV Nested CV
PCA Rad PCA Rad

Sensitivity 93% 93% 86% 86%
Specificity 94% 94% 91% 94%

4 Discussion

In this paper we discuss two methods to quantify and detect airway shape de-
formation due to TB. Both these methods were able accurately to distinguish
between paediatric cases with TB and without TB, and demonstrate the po-
tential of these techniques to assist in the detection of airway pathology. PCA
based features may be more generalizable and, more effective for differentiating
other types of pathology without adjusting the feature choice.

The datasets were collected from two hospitals and it is possible that popu-
lation differences also have an effect on the classification. However, the features
extracted using PCA correspond to clinical signs of TB. Examining Figure 5,
the modes correspond to stenosis and widening of the carinal angle, which is
consistent with clinical signs of TB [1]. The other feature set was based on char-
acteristics of airway pathology.

This paper shows the potential of automated airway analysis to assist in the
identification of pathology with possible CAD applications. The model could be
developed further by training on localised pathology, or applied to other areas
such as airway deformation and narrowing caused by congenital cardiac disease.



mean

Mode 1

Mode 2

Mode 3

Mode 4

mean

Fig. 5. Variation along the first four PCA modes.
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