Identification of paediatric tuberculosis from airway shape features

Benjamin Irving¹, Pierre Goussard², Robert Gie², Andrew Todd-Pokropek¹ and Paul Taylor¹

b.irving@ucl.ac.uk

¹University College London, UK ²Stellenbosch University, South Africa

Introduction

- Prevalence of TB is still high, particularly in developing countries
 Poor detection rates in children
- Primary TB in children is characterised by lymphadenopathy
 leading to displacement and stenosis of airway branches
- Aim: Assist in the detection of TB from airway shape Segment and model airway shape changes from CT scans

Method

Airway Segmentation

- Detect trachea
- 3D morphological closing and reconstruction
- Seeded region growing

Skeletonisation and branch point detection

- Iterative topology preserving
- thinningBranch point detection by voxel connectivity

Airway Correspondence

Surface points

projected from

centreline

- Equidistant sampling of centreline
 Projection of points onto surface orthogonal to centreline
- Surface points used as landmark points for TPS warp

Dataset

- 61 Patients
- *TB and non-TB
- *Mean 33 months ⋆Min 2 months
- CT Scan
- *Axial plane 0.3-0.5mm
- *Slice thickness 0.7-1mm

Airways of TB patients with narrowing in left main bronchus and bronchus intermedius:

Method 1: **PCA Features**

- 3n input vector where n is the number of vertices
- Projection onto orthogonal components to generate features

Airway variation along the first 4 modes

Local Alignment

- Local alignment of surface required after TPS
- Forcing function directs alignment
- Expansion/contraction force improves matching with stenosed branches

 $F_{i,1} = \vec{r}_i - \vec{t}_i$ Closest point $F_{i,2} = \sum_{j} \hat{v_j}(||\vec{v_j}|| - ||\vec{v_0}||) \text{ where } \vec{v_j} = \vec{t_j} - \vec{t_i}$ Mesh preserving term $F_{i,3} = \hat{n_i}(\hat{n_i} \cdot F_{i,1})$ Expansion/contraction force $F_{i,tot} = \alpha F_{i,1} + \beta F_{i,2} + \gamma F_{i,3}$

Closest point matching (F1+F2)force (F1+F2+F3)

Improvement using expansion/contraction

Thin plate spline warp

- Warp vertices onto a template airway to generate matching vertices
- Landmark points direct warp by minimisation of bending energy
- ~1500 vertices

Conclusions

- Both PCA based features and branch features accurately distinguish between TB and non-TB cases
- This method shows the potential of airway shape analysis to assist in the detection of airway pathology
- Future work:
 - ⋆Test method on a larger dataset
 - *Local analysis of pathology

The authors would like to acknowledge the Commonwealth Scholarship Commission for funding this project.

Method 2: **Branch Features**

- Alternative set of features:
- ratio of orthogonal diameters
- branch length and diameter

Classification

- Classification to compare two feature vectors:
- **★10 PCA modes**
- ★90% of airway variation ★10 radius based features
- Support vector machines Parameter selection and validation using nested leave-one-out cross validation

Results

 Detection of paediatric TB cases from airway shape

Sensitivity		Specificity
PCA feat	86%	91%
Branch feat	86%	94%

- ratio of local minima and maxima
- carinal angle