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Abstract

This thesis proposes a novel computer assisted detection framework to analyse

airway shape change and to detect signs of paediatric pulmonary tuberculosis (TB).

The method can accurately distinguish TB patients with airway involvement, from

non-TB patients using CT scans. This model is also applied to X-ray radiographs to

segment the airways.

As a first step, a CT airway segmentation algorithm is proposed, and then eval-

uated as part of the EXACT’09 airway segmentation challenge. Algorithms are then

implemented to extract the airway centreline, detect branch points and label each

airway branch. A number of cases had the appearance of complete obstruction in

some bronchi, and a method is presented to identify and segment beyond these ob-

structions.

A statistical shape model is developed using airway shape variation, which re-

quires correspondence between airways. Thus, a method to register regions of the

airway tree is proposed. This method generates landmarks on the airway surface.

Using these landmarks, a template mesh is then aligned to each airway by thin-plate-

spline warp and local vertex alignment. This develops a corresponding surface mesh

representation for each airway that can be used for statistical analysis.

A statistical model of the variation of local regions of the airway is constructed

and features derived from this are used to train a classifier to detect abnormal airway

variation. The method is able to accurately detect TB in unseen cases. It is also

compared to second method based on automated bronchi measurements.

Finally, a method is developed that uses the previous 3D model to segment the

airways in 2D radiographs. This uses an optimisation algorithm to fit the 3D model

to image features in the radiograph.

These methods create novel tools for airway analysis and have wider applications

in medical imaging.
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Dedicated to my father, David, who first got me interested in en-

gineering and problem-solving. He would have been proud that I’ve

followed a similar direction.
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1
Introduction

Detection of pulmonary tuberculosis (TB) in children is challenging, and a large num-

ber of cases are missed. Due to this difficulty, several tests are combined for diagnosis

– including chest imaging. Lymphadenopathy (pathology of the lymph nodes) is a key

sign of paediatric TB, but due to poor visibility in medical images, lymphadenopa-

thy is commonly identified by the deformation of surrounding structures, such as the

airways.

Automated analysis of the airway has the potential to assist in the detection of

abnormal airway shape, the detection of TB and provide additional information to

the clinician when viewing multi-slice CT. There is also potential to improve the

visualisation and analysis of the airways in 2D radiographs.

This thesis develops methods to analyse both airway structure and shape varia-

tion in CT scans, which can be used to assist in the detection of signs of TB. This

research includes segmentation of the airways, detection of the structure, registration

of multiple airway shapes, detection of obstructions and classification of airway shape.

These methods also have potential to be applied to other areas of airway research

22



CHAPTER 1. INTRODUCTION

and detection of other airway pathology, as well as 2D radiographs to assist in the

segmentation of the airways

In this chapter, paediatric TB, the signs of paediatric TB in airway imaging, and

the development of an airway analysis method are introduced. An outline of the

thesis is presented in Section 1.6 and the contributions of this research are discussed

in Section 1.7.

1.1 Tuberculosis

TB has a considerable effect on the quality of life in developing countries – particularly

in Africa, and is the second biggest cause of death from a single infectious agent

(WHO, 2012). The World Heath Organisation (WHO) estimates the incidence of TB

to be 276 (new cases/100 000 pop/yr) in Africa, higher than any other region in the

world (WHO, 2012). The second highest is in South-East Asia with an incidence of

193. South Africa, a country with one of the highest burdens of TB, has an estimated

incidence of 981 and an estimated prevalence (the number of cases at a given time)

of 795 per 100 000, as estimated by the WHO for 2010.

TB is spread from an infected person by the bacteriumMyobacterium Tuberculosis

in aerosol droplets, for example by coughing, and a person is infected by inhaling the

bacterium. There are a number of stages to TB infection and these depend on whether

the patient has been previously exposed to TB. Primary tuberculosis occurs when a

patient has not been previously exposed. Post-primary TB is a recurrence of TB after

a patient has been previously infected and then undergone an asymptomatic period.

Progressive TB is the progression of the disease from primary to post-primary TB

without a break (Collins and Stern, 2007; Grainger and Allison, 1986; Marais, 2007).

Primary TB is the first infection of tuberculosis and is, therefore, the most com-

mon form affecting children. The Myobacterium is inhaled, travels through the air-

ways and enters the alveoli. There is then development of regions of consolidation

–that is, a mass that is a combination of bacteria and inflammation from the bodies

immune response. The consolidation is known as the primary focus (or Ghon focus).

At this point, the spread of TB is generally contained and the patient does not de-

velop the disease, but the patient will have developed antigens in response to the

bacterium and will test positive to an antigen skin test (Gie, 2003).
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If the infection is not contained at this point, it will spread via the lymphatic

system and infect lymph nodes, typically the hilar, paratracheal or mediastinal nodes.

The combination of the Ghon focus and the infected lymph node is known as the Ghon

complex. Lymphadenopathy – the pathology of the lymph nodes – causes the lymph

nodes to enlarge which can lead to deformation of the airways (Gie, 2003; Grainger

and Allison, 1986).

Children have more malleable airways than adults and lymphadenopathy is a

common feature of pulmonary TB in children. Therefore, airway compression from

the lymph nodes is common, such as displacement of the trachea and bronchi, as

well as complete or partial obstruction of the bronchi. Obstruction of the bronchi

can, in turn, lead to a hyper-inflated or collapsed lobe (Gie, 2003; Goussard and Gie,

2007; Grainger and Allison, 1986). The lymph nodes can also erode through the

pleura causing pleural effusion or erode into the bronchi (Gie, 2003; Goussard and

Gie, 2007; Grainger and Allison, 1986). However, pleural effusion is rare in primary

TB (Andronikou and Wieselthaler, 2004). Miliary TB, characterised by small nodules

scattered throughout the lungs, can also sometimes occur in primary TB (Grainger

and Allison, 1986).

1.2 Paediatric Pulmonary Tuberculosis

While there has been considerable focus and recent advancements in the detection

of TB in adults, paediatric TB is poorly detected and under reported (Nelson and

Wells, 2004; Sandgren et al., 2012; Swaminathan and Rekha, 2010). However, TB

is a major cause of childhood morbidity and mortality, particularly in developing

countries. There is, therefore, a need to improve existing diagnostic techniques and

develop new methods of detection to supplement the existing ones.

A considerable proportion of the TB burden is in children. Nelson and Wells

(2004) estimate that approximately 11% of the 8.3 million TB cases worldwide in

2000 were children. Cases are typically under reported; the WHO reports only smear-

positive cases and most children with TB under 5 years of age are smear negative

(Nelson and Wells, 2004).

Current methods of detecting tuberculosis in adults have considerably poorer accu-

racy in children. Diagnosis of TB is substantiated in less than 50% of paediatric cases

24



CHAPTER 1. INTRODUCTION

and this can be even poorer in developing countries (Andronikou and Wieselthaler,

2004; Coulter, 2008). The limitations of the current methods for diagnosing paediatric

TB are as follows:

1. Symptoms are vague and shared by other diseases (Andronikou et al., 2004;

Coulter, 2008; du Toit et al., 2002; Gie, 2003; Salazar et al., 2001). Symptoms

include cough, weight loss and fever; the patient can also be asymptomatic.

Symptoms have been used successfully to screen for TB in children older than

three years (sensitivity 82.3%, specificity 90.2%), however the results are much

poorer for younger children (sensitivity 51.8 %, specificity 92.5 %) and children

with HIV (sensitivity 56.2 %, specificity 61.8 %) (Marais et al., 2005). This is

made more difficult by the similarity in symptoms between patients with and

without TB if they are infected with HIV(Andronikou et al., 2004; Coulter,

2008; du Toit et al., 2002; Gie, 2003; Salazar et al., 2001).

2. Contact with an infected adult is used as an indicator, but this is often

difficult to establish if the infected adult is not in the child’s home (Gie, 2003).

3. Direct detection of the bacterium is the “gold standard” but there are

difficulties acquiring the samples from children. A culture of M. Tuberculosis

from sputum i.e. material such as phlegm brought up from the lungs, is the

most common method of detecting TB in adults. However, this method is

not effective in children (Andronikou and Wieselthaler, 2004; Gie, 2003; Marais

et al., 2006; Salazar et al., 2001). In a study by Salazar et al. (2001), only

19% of infants and 52% of 2 to 4 year olds that were diagnosed with definite

or probable pulmonary tuberculosis had a positive sputum sample or gastric

aspirates. Similarly, Marais et al. (2006) report a positive test of between 30%

and 40% for cultured samples and less than 15% for sputum smear microscopy

for children with TB. This is because a nonproductive cough makes it difficult to

obtain sputum, and childhood TB is paucibacillary so it yields a low bacterium

count (Gie, 2003). Gastric washing can be used to test for bacilli in swallowed

sputum. However, this is difficult to obtain and also has a low yield of bacterium

(Andronikou et al., 2004; Salazar et al., 2001).

4. Antigen skin tests are common but, as discussed earlier, if a person has

25



CHAPTER 1. INTRODUCTION

been exposed to TB, and even though the infection is contained, the patient

will still develop sensitivity to Myobacterium Tuberculosis and test positive in

an antigen skin test. Antigen tests will also give false negatives in severely ill

patients (Coulter, 2008; Gie, 2003).

5. Interferon-γ testing is also used, but cannot distinguish between latent or

active TB (Coulter, 2008).

6. Chest radiography stills plays a key role in the detection of pulmonary TB.

However, a major problem in developing countries is poor quality paediatric

chest X-rays and inter-observer differences in the analysis. This can be due to

clinicians who are not trained in the task (Coulter, 2008).

7. New diagnostic tests such as direct fluorescence sputum microscopy and faster

liquid culture methods have similar problems detecting TB in children because

of the low sputum yield and paucibacillary nature of the disease in children

(Sandgren et al., 2012).

Due to the difficulty of confirming TB, a combination of tests is generally used:

contact with an adult case, a positive tuberculin test, and signs in a chest X-ray. This

is a useful procedure but is less effective in endemic areas because contact with an

infected adult is difficult to establish and tuberculin only indicates exposure (Marais,

2007; Marais et al., 2006). Sandgren et al. (2012) highlight the need for further re-

search into the diagnosis and treatment of paediatric TB, and highlight the increasing

clinical interest in paediatric TB.

1.3 Lymphadenopathy and airway deformation

Paediatric TB could benefit from additional tests, and better analysis of airway de-

formation has the potential to assist in the detection of TB. This section discusses

signs of lymphadenopathy caused by tuberculosis and its effect on the airways.
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1.3.1 Airway anatomy

The thoracic cavity is enclosed by the ribs, sternum and spine and is divided into two

pleural cavities and a mediastinum separating the two. The pleural cavities contain

the lungs and the mediastinum includes the heart, trachea and oesophagus. The lungs

are divided into separate lobes by fissures. The right lung is divided into 3 lobes and

the left into 2 lobes. The heart occupies more space on the left side and so the right

lung is larger than the left. The left lung does not have a middle lobe but instead

has an extra attachment onto the upper lobe, the lingula (Moses et al., 2005).

The airway tree supplies oxygen to the lungs and begins at the trachea. The

trachea bifurcates to form the left main bronchus (LMB) and right main bronchus

(RMB), which enter the lungs. The RMB bifurcates into the right upper lobe

bronchus (RUL), supplying that lobe, and the bronchus intermedius (BI), which fur-

ther divides into the right middle lobe bronchus (RML) and the right lower lobe

bronchus (RLL). As there is no middle lobe on the left side, the LMB bifurcates into

the left upper lobe bronchus (LUL) and the left lower lobe bronchus (LLL). The air-

ways continue to divide into smaller and smaller bronchi and bronchioles until they

terminate at the alveoli where gaseous exchange takes place. The main divisions of

the airway are shown in Figure 1.1 where names of the bronchi describes the lung

region that is supplied (Moses et al., 2005).

The lungs also have a large blood supply. The pulmonary artery carries deoxy-

genated blood from the heart to the lungs where it is oxygented and leaves via the

upper and lower pulmonary veins. Bronchial arteries arising from the aorta supply

the lung tissue with oxygenated blood. Lymphatic vessels pass through lymph nodes

that are present in the lungs and then drain into the mediastinum (Moses et al.,

2005).

1.3.2 Lymphadenopathy

Mediastinal and hilar lymphadenopathy are strong indicators of childhood TB. How-

ever, there are inherent difficulties detecting lymphadenopathy from chest radiographs

because of its radiotranslucence, and CT remains the “gold standard” for detecting

lymphadenopathy (Andronikou et al., 2004; Swingler et al., 2005). Even in CT it

is often difficult to distinguish the node from surrounding tissue other than from
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A: Right Main Bronchus

B: Right Upper Lobe Bronchus

C: Bronchus Intermedius

D: Right Middle Lobe Bronchus

E: Right Lower Lobe Bronchus

F: Left Main Bronchus

G: Left Upper Lobe Bronchus

H: Left Lower Lobe Bronchus

I: Lingular Bronchus

Figure 1.1: An airway segmentation with labelled branches
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deformation of surrounding structures.

Leung et al. (1992) performed a study involving 142 paediatric patients, with

a mean age of 5.9 years, and definite or probable TB. They noted that hilar or

mediastinal lymph node enlargement was present in 92% of cases. Of particular

interest is that they noted that 100% of patients under 3 years of age had enlarged

lymph nodes. Andronikou et al. (2004) performed a study involving 100 children with

a mean age of 22 months who were diagnosed with TB using the WHO criteria. Of

these children, 92 had visible lymph nodes on CT and of these 46 patients had nodes

greater than 1 cm and, therefore, considered definitely pathological. These studies

suggest that lymphadenopathy is present in the majority of paediatric TB patients

and identification of the lymph nodes can be considered a key sign of paediatric

TB. In fact, according to du Toit et al. (2002) lymphadenopathy is one of the few

distinguishing signs that can be used to diagnose paediatric TB.

Some previous studies have used chest radiographs to identify lymphadenopathy

(Leung et al., 1992) but X-ray images have been found to be a poor method of

detecting lymphadenopathy (Andronikou and Wieselthaler, 2004; Andronikou et al.,

2004; du Toit et al., 2002; Swingler et al., 2005). It is important to note that lymph

nodes are not clearly visible in X-ray or CT, but deformation and displacement of

other structures allow detection and measurement of lymph nodes in CT.

1.3.3 Airway involvement

Airway involvement due to lymphadenopathy is relatively common. Studies indicat-

ing 35% (Andronikou et al., 2004) and 38% (Theart et al., 2005) of paediatric TB

cases have some airway involvement. Deformation can occur due to one enlarged

lymph node, or compression can be due to an enlarged lymph node on both sides or

a lymph node and a vessel, and can be used as an indicator of TB (Andronikou et al.,

2004; Goussard and Gie, 2007).

The trachea, LMB, RMB and BI are generally affected by lymphadenopathy,

which can compress the airways externally or erode into the airways (Gie, 2003;

Goussard and Gie, 2007). This generally results in partial compression of the airways.

If the airway is partially obstructed then a “ball-valve” effect may develop where the

airway becomes blocked only on exhalation, leading to hyperinflation of the lung.
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If a bronchus is completely obstructed then lobar collapse can occur. According to

Goussard and Gie (2007), deviation of the trachea can be an indication of paratracheal

lymph gland compression and if both main bronchi are narrowed this can indicate

enlarged subcarinal lymph nodes.

Figures 1.2, 1.3 and 1.4 show minimum intensity projections (MinIP) of a coronal

view of the airways with lymphadenopathy and airway stenosis. Figure 1.4 shows the

clearest airway stenosis and low density ring-enhancing nodules are also visible.

1.3.4 Other radiographic signs of paediatric TB

There are a number of other radiographic signs besides airway deformation that are

associated with paediatric TB. In radiographs the following signs were observed: air

space consolidation was seen in 80% of patients; hilar lymphadenopathy was seen in

72% of patients – however these are generally vague and unclear; hyperinflation of

the lung was seen in 32% of patients and nodular lesions were seen in 28% of patients

(Kim et al., 2006). In CT, signs were as follows: consolidation was seen in 100% of

patients (and cavitation within the consolidation was seen in 30% of patients); hilar

lymphadenopathy was seen in 100% of patients; hyperinflation of the lung was seen

in 47% of patients and nodular lesions were seen in 41% of patients.

Consolidation appears in most cases and is visible in radiographic and CT ex-

aminations. This can be identified by regions of greater attenuation in the lungs.

However, there are a number of causes for consolidation and, therefore, the speci-

ficity of consolidation for detecting paediatric pulmonary TB is low.

1.3.5 Other diseases affecting the trachea and bronchi

Congenital cardiac disease can cause airway obstruction by compression from enlarged

cardiovascular structures. Lee et al. (2002) assessed 52 paediatric patients using

bronchoscopy. Each patient in the study had both airway and congenital cardiac

disorders. They found that 67 % of patients had external compression of the lower

airways. Of these cases 11 % was compression of the trachea, 15 % was compression of

the right main bronchus (RMB) and 67 % was compression of the left main bronchus

(LMB). Where there was RMB involvement, 75 % of these cases also had LMB
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Figure 1.2: Coronal minimum intensity pro-
jection (MinIP) image with arrows indicat-
ing lymphadenopathy. Image courtesy of
Prof S. Andronikou, Radiology Department,
University of Witwatersrand.

Figure 1.3: Coronal minimum intensity pro-
jection (MinIP) image with arrows indicat-
ing lymphadenopathy. Stenosis of the left
main bronchus (LMB) is visible. Image
courtesy of Prof S. Andronikou, Radiology
Department, University of Witwatersrand.

Figure 1.4: Coronal minimum intensity pro-
jection (MinIP) image with arrows indicat-
ing lymphadenopathy. Stenosis of the left
main bronchus (LMB) and bronchus inter-
medius (BI) is visible. Image courtesy of
Prof S. Andronikou, Radiology Department,
University of Witwatersrand
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involvement. The cause of the compression included dilation of the pulmonary arteries

or aorta, or abnormalities of the aortic arch.

Lung cancer causes the largest number of cancer related deaths in the world

(Bourke, 2007). Tumours can invade a number of lung structures and can result in

airway obstruction. Tracheal tumours are rare but cause increasing airway obstruc-

tion and can be inoperable if detected too late. Bronchial tumours are much more

common and lead to obstruction of the airways. As the disease progresses this can

lead to lobar collapse and consolidation in the lung lobe. Tumours can also affect the

hilar, paratracheal and mediastinal lymph nodes, causing enlargement and leading to

airway obstruction and displacement (Bourke, 2007; Brewis et al., 1995).

Bronchiectasis is a pathological dilation of the bronchi caused by a chronic bac-

terial infection of the epithelium in the lung. Chronic infection causes tissue damage

which leads to the bronchial dilation (Bourke, 2007).

A large number of other diseases affect the airways and Boiselle et al. (2008)

provide an overview, including signs associated with each disease. These include

post-intubation stenosis, amyloidosis, inflammatory bowel disease, relapsing poly-

chondritis, rhinoscleroma, sarcoidosis and a number of other diseases. Post-intubation

stenosis is a common cause of stenosis of the trachea. Amyloidosis can lead to tracheal

and bronchial wall thickening. On rare occasions, inflammatory bowl disease cause

tracheobronchial complications including sometimes irreversible stenosis. Relapsing

polychrondiritis can affect both central and distal airways through inflammation and

tracheomalacia. Rhinosclerma can lead to bronchial wall thickening and luminal nar-

rowing as well as nodularity of the mucosa. Sarcoidosis can lead to smooth, irregular

and nodular stenosis of the airways. This illustrates the vast array of disease affecting

the airways and the potential of the airways to be used as a sign for computer assisted

disease detection.

As shown above, tuberculosis is not the only cause of lymphadenopathy or airway

deformation. However, in patients under 5 years, other causes of lymphadenopathy

are relatively uncommon in endemic TB areas, such as South Africa, and therefore

lymphadenopathy is a good indicator of paediatric TB (Gie, 2003). Also, due to the

difficulty of diagnosing paediatric TB (confirmed in <50% of cases), clinicians use a

combination of several tests including imaging, sputum and tuberculin. The diagnosis

of paediatric pulmonary TB partly relies on the identification of lymphadenopathy in
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the images (Andronikou et al., 2004). Therefore, our aim is to provide an automated

approach to this detection, which would be used in conjunction with other clinical

tests.

1.4 Airway imaging

CT is established as a key method of evaluating paediatric airway involvement (An-

dronikou et al., 2012). While fibre-optic trachea-bronchoscopy (FTB) is considered

the “gold standard” for evaluating airway compression, the procedure is invasive and

is performed under general anaesthesia. Modern CT scanners are becoming a viable

alternative for identifying stenosis because of the high resolution images and no need

for sedation – due to the speed of the acquisition. An additional advantage of CT is

the ability to view external causes of airway pathology at the same time as viewing

a rendering of the airway.

CT produces a series of axial slices over a patient volume. There are a number of

common methods that are used by clinicians to visualise a CT volume – including for

visualisation of the airways. Multi-planar reformation (MPR) is a common technique

that reconstructs 2D images, in a number of orientations, from the CT axial slices

including the coronal, sagittal and oblique views. Figure 1.5 shows example axial,

sagittal and coronal slices with airway regions visible.

Minimum intensity projection (MinIP) is a useful method of visualising the air-

ways, in particular. MinIP contructs an image by using the minimum intensity en-

countered by a ray passing through a volume from a defined viewpoint (Andronikou

et al., 2012; Rubin, 2003). This technique highlights air filled structures and allows

visualisation of multiple airway bronchi that lie on different planes, but it only pro-

duces a two dimensional visualisation and, therefore, does not visualise the bronchial

relationships. Figures 1.2, 1.3 and 1.4 show MinIP images of the airways and lym-

phadenopathy. A more complete visualisation of the airway is available in these

figures compared to a single coronal slice in Figure 1.5c.

A number of common methods are available for 3D visualisation of the airway.

Shaded surface display (SSD) provides a surface rendering using manually defined

thresholds. This can be adjusted to visualise the airways. Partial volume effects

mean that smaller bronchi have a similar greyscale to the lung region, making it
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(a) Axial slice: arrows indicate examples of
smaller bronchi.

(b) Sagittal slice: arrows indicate the right up-
per lobe bronchus and bronchus intermedius.

(c) Coronal slice: arrow indicates the stenosed
left main bronchus.

Figure 1.5: Axial, sagittal and coronal slices showing the airways in a chest CT scan
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impossible to visualise only the airways with this method. Volume rendering (VR) is

similar to SSD but transparency is assigned to greyscale values allowing more detailed

visualisations. VR has been used by clinicians to examine stenosed airways from TB

(du Plessis et al., 2009). Both VR and SSD can be used to examine the inside of the

bronchial lumen and is known as virtual bronchoscopy.

Radiation dose and limited access – particularly in rural areas – makes CT cur-

rently infeasible for routine detection of TB (Andronikou and Wieselthaler, 2004).

Radiographs do not have these limitations but generally show poor airway visibility.

Digital radiography (DR) may offer improved visualisations of the airways – especially

Lodox Statscan. Lodox Statscan differs from conventional DR because it is a linear

slit scanning X-ray machine. A rotating anode X-ray tube is mounted on a C-arm.

A fan beam is emitted via a variable collimator of width 0.4 mm to 1.0 mm. The

detector is fixed to the other end of the C-arm. During an examination the C-arm

moves across the patient to acquire the image. A scan is completed in less than 13

seconds (Lodox, 2006).

Lodox linear slit scanning radiographic offers improved visualisation of the trachea

and main bronchi (Pitcher et al., 2008). In a study evaluating the airway visibility

of the airways in 102 patients between 6 months and 13 years, the LMB and RMB

could be seen and measured in over 90% of the cases by trained clinicians (Daya

et al., 2010; Sanders et al., 2009). Sanders et al. (2009) also suggest that airway

shape in X-rays could be used to detect abnormalities caused by lymphadenopathy.

The improvements in airway visibility could be due to higher kV used for the standard

examinations and lower scatter of the slit scanning technology (Irving et al., 2008).

An additional benefit of the linear slit scanning technology is the low radiation dose

compared to conventional radiography (Irving et al., 2008; Maree et al., 2007). Figure

1.6 shows a typical Chest AP image acquired using Statscan for a paediatric patient.

While CT is generally not feasible for routine detection of TB, it remains a key

technology for detection of lymph nodes and airway visualisation (a key sign of pae-

diatric TB). It is expected that low-dose CT will play an increasingly larger role in

the diagnosis and analysis of paediatric TB. Low-dose CT can reduce the radiation

to the equivalent of two chest radiographs, and even with more noise introduced in

these scans, can still provide the same diagnostic information as conventional CT

(Donnelly et al., 2001; Peng et al., 2011). As CT becomes more common in TB
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Figure 1.6: Visualisation of the airways using Statscan with labels showing the visible
airway branches and the subcarinal angle (SCA). Image courtesy of Virginia Saunders,
MIRU, University of Cape Town.
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endemic areas, there is potential for radiographs to be replaced for both screening

and follow up examinations. This will have a considerable impact on the detection

of paediatric TB (Peng et al., 2011). However, with the number of slices produced

during each examination, the workload of clinicians will also increase, and thus, along

with increased use of CT, automated airway and lymph node analysis will become

increasingly important.

1.5 Computer-assisted detection of chest

pathology

Computer assisted detection (CAD) has the potential to make a large contribution

to the detection of chest pathology. Typically, analysis of radiographs and CT relies

on visual inspection of pathology, and CAD can add quantitative analysis to aid

diagnosis (Bagci et al., 2012).

Typical CAD methods for detecting infectious disease in the chest region, from CT

scans and radiographs, use texture and shape features to enhance regions of pathology,

such as nodules, thickening and opacities, and to derive features for classification.

Examples of shape features include thickness, area, volume, curvature, irregularity,

and examples of texture features include greyscale contrast, variance, entropy and

correlation (Bagci et al., 2012; Katsuragawa and Doi, 2007).

CAD for TB detection in CT and radiographs has focussed on post-primary disease

commonly found in adults. Radiographic signs of infectious disease, also associated

with TB, include: nodules, ground-glass opacities, and consolidation. Nodules have

varied appearance such as round, irregular, solid, non-solid, soft tissue or ground

glass opacities. Shape image features such as opacity, shape index, curvature and

irregularity are often used to extract candidates and provide features for classification.

Consolidation and cavitation are commonly detected using texture based features for

regions in the lung fields (Bagci et al., 2012; Katsuragawa and Doi, 2007).

van Ginneken et al. (2002b) developed a CAD system to detect TB using local

texture analysis of the lung region. The lung fields are segmented in the radiograph

and divided into a total of 42 regions for analysis. Multiscale filters using Gaussian

derivatives are then applied to the regions. Texture features are computed from the
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filtered regions, based on standard deviation, skewness and kurtosis, and used with

a k-nearest-neighbour classifier to detect signs of pathology. The method achieved

an area-under-the-curve of 0.82 for the receiver operating characteristic (ROC) curve

on a dataset of radiographs (147 images with textural abnormalities and 241 normal

images).

As discussed earlier, due to the nature of primary pulmonary tuberculosis (com-

mon in young children), signs detected in previous CAD methods are uncommon in

paediatric TB, and instead, lymphadenopathy and airway deformation are important

for detection in chest radiographs and CT. Consolidation is also common in paediatric

TB but has a low specificity because there are a number of other common causes.

There is potential to use automated airway shape analysis in the assessment of

paediatric TB. An airway shape derived method would only be effective for the ap-

proximately 40% of paediatric TB patients showing airway involvement. However,

due to poor detection of existing methods, this could be used alongside other diag-

nostic procedures to target cases with airway deformation and improve the detection

of TB. An important part of the diagnostic routine for TB patients with suspected

airway involvement is to undergo CT and bronchoscopy to quantify the severity and

cause of airway involvement (du Plessis et al., 2009). Therefore, an airway analysis

tool would also be useful to assess the severity of the airway involvement.

As discussed earlier, lymphadenopathy has poor visibility in chest radiographs

but can be seen in a chest CT. Of the 100 paediatric TB cases evaluated, Andronikou

et al. (2004) detected the presence of lymph nodes in 92 cases, but only 46 had nodes

greater than 1 cm, which were considered definitely pathological, and 35 cases had

airway involvement. Studies that detected lymphadenopathy established a consensus

from a number of clinicians on the presence of lymph nodes based on features such as

the lower attenuation of the centre of a node, peripheral ring-enhancement, presence

of calcification and deformation of surrounding structures (Andronikou et al., 2004;

Kim et al., 2006). These features also have potential to be used for detecting signs of

TB in 46% of patients but are only applicable to CT and not X-ray. Airway shape

is a key sign of paediatric TB that can be used in both CT and radiographs to aid

detection of TB as well as general airway analysis. Inclusion of additional texture

features based on lymphadenopathy would further improve detection in CT but this

is unlikely in radiographs.
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Therefore, in this thesis a novel method the uses airway shape change to detect

signs of paediatric TB is introduced. However, no previous CAD algorithm has used

airway shape to detect TB. Most variation is seen in the larger bronchi including the

LMB, RMB, BI and Trachea, and variation can include deformation and stenosis,

varying from mild to severe. Because of the complexity of the shape changes, branch

cross sections may not be enough and a statistical model is built for regions of the

airway to model pathological shape change.

The purpose of this model is to distinguish normal airway shape variation from

pathological shape variation. The trachea and bronchi change shape during breathing

and, because it is not possible to perform breath-hold CT scans for young patients,

breathing will affect the appearance of the airways in CT. However, variation of the

airways due to breathing is expected to be distinguishable from pathological variation.

Holden and Ardran (1957) observed the the trachea and bronchi to lengthen and dilate

slightly during quiet inspiration, which can be distinguished from local narrowing,

narrowing of certain branches relative to others and pathological deformation.

This method focusses on detection of abnormal variation of the airway in CT

examinations to detect TB. Applying this method to radiographs will extend the

application to routine screening. However, airway visibility in radiographs is poor. As

part of this work, a 3D model is used to assist in the segmentation of 2D radiographs.

A 3D model derived from CT images with far better airway visibility can be used to

constrain the 2D airway segmentation in radiographs. There is potential to extend

this analysis to detecting pathological airway shape change in radiographs.

This thesis describes a framework for automatically segmenting, extracting the

structure of the airway and analysing the shape variation in a dataset of normal CT

scans compared to CT scans with airway pathology. This method has the potential

to provide additional information to the clinician regarding airway deformation and

stenosis, for patients with potential airway involvement, undergoing CT examinations.

A classification tool based on a dataset of CTs may be used to identify variation that

is difficult or time consuming to see in axial slices. The 3D model of normal and

abnormal variation includes more detail than can be identified in 2D radiographs and

has the potential to assist in the segmentation and analysis of radiographs.
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1.6 Thesis outline

This thesis presents research on airway segmentation, airway registration and classifi-

cation of airway pathology, and is applied to the problem of detecting airway stenosis

and deformation caused by lymphadenopathy from paediatric pulmonary tuberculo-

sis in CT images. Chapters 2 and 3 segment and extract the structure of the airway

to allow more advanced analysis in Chapters 4 - 7. An outline of each chapter is

presented here and a more detailed summary of each chapter is presented in Chapter

8.

Chapter 2 presents a method to segment the airway tree and is used as the

basis of further airway analysis. A start point in the trachea is identified and used

to initialise the segmentation. Simple thresholding and region growing – with a leak

restriction step – is used to segment the trachea, the LMB and the RMB. Then, a

morphological filtering method is used to enhance airway regions in the axial, coronal

and sagittal slices. A threshold is applied to identify airway locations, and a region

growing method which is initialised at the trachea seed point, is used with a leak

removal step to extract the final airway. The method was evaluated on an adult

dataset as part of the EXACT’09 airway segmentation competition and achieved a

fair result compared to other state-of-the-art airway segmentation algorithms. This

segmentation algorithm was used to segment paediatric airways for the remainder of

this study.

Next, the structure of the airways is identified, as discussed in Chapter 3. An

existing airway skeletonisation algorithm is used to extract the branching centreline

of the airway tree. A pruning method is used to extract the true branches, and the

branching structure is used to identify anatomical branches and label the surface

mesh of the airways.

Once the structure of each airway has been identified from airway segmentation

and centreline detection, it is necessary to register each airway surface mesh, to

compare variation between airway trees. Chapter 4 introduces a method to register

regions of the airway tree in a dataset of chest CT scans. Landmarks are projected

onto the airway surface, and used to guide the thin-plate-spline warp of a template

mesh to each airway. Individual vertices of the template mesh are then aligned to

each airway, using a method adapted for stenosed tubular shapes. The final alignment
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was evaluated in terms of the accuracy and mesh quality.

Due to severe pathology, a number of cases have main bronchi that have the

appearance of being completely obstructed in the CT scan. These cases produce

incomplete airway segmentations, and, for visualisation and analysis, it is important

to segment beyond obstructions. Chapter 5 uses the airway structure defined by

the labelled skeleton and the statistical shape model of each branch of interest, to

detect missing bronchi. The direction of the branch and point of obstruction are then

used to search for additional airway regions. The method was evaluated on a limited

number of cases with obstruction but showed promising initial results.

Chapter 6 builds on the previous chapters to evaluate paediatric airway stenosis

and deformation caused by tuberculosis. A statistical shape model (SSM) is created

for regions of the airway tree from a dataset of CT scans showing normal and patho-

logical airway variation. The modes of variation from principal component analysis

are used as features for classification. This method is compared to a second method

using features derived from measurements of the branch diameter. These different

methods were evaluated on a test set of patients with and without tuberculosis from

Tygerberg Hospital, South Africa. The SSM derived features could accurately dis-

tinguish TB from non-TB paediatric patients using local airway shape changes and

illustrate the potential of including automatic assessment of airway shape in the de-

tection of paediatric pulmonary tuberculosis.

This airway assessment method could be applied to 2D radiographs. However,

segmentation of the airways in radiographs is a challenging task because of poor

visibility and overlapping bone and heart structures. In Chapter 7, the projection

of a 3D statistical shape model of the airways to 2D is investigated, in order to

assist in the segmentation of the 2D region. Silhouette vertices on the mean airway

model are detected and projected onto the 2D radiograph. This projection is initially

aligned to the airway using four manual annotations. An energy function is created

from the filtered image gradient and greyscale-derived features, and is used along

with a regularisation term to fit the 3D model the 2D radiograph. The results show

that this method can be used to segment the trachea and main bronchi but could be

improved by incorporating additional radiographic views.

As a research student at UCL, I was given this project to initiate and develop.

Thus, I have developed all aspects of this detection system from scratch with the
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support of my supervisors.

1.7 Contributions

The main contributions of this thesis to the fields of medical image computing and

computer assisted detection are as follows:

1. Airway segmentation and evaluation

An airway segmentation method is developed that extends current morpho-

logical based methods, by applying a filter in three dimensions to overcome

problems at branch bifurcation. Novel segmentation leak removal steps were

also introduced for the main bronchi and the peripheral branches. This method

was independently evaluated as part of of the EXACT’09 airway segmentation

challenge.

2. Registration of multiple airway trees to assist in analysis

A method to register the surface mesh of multiple airway trees is presented,

which has not been previously attempted. The method generates landmarks

in the airway, warps a template mesh to each airway and performs surface

match. Novel methods to consistently select regions of the airway and match

the template to stenosed airways are also presented. This method is evaluated

in terms of mesh quality and registration accuracy, and yields good results.

3. Detection of airway tree obstructions and segmentation beyond the

obstruction

When severe pathology is present, some bronchi may appear completely ob-

structed. A novel approach is presented that builds a statistical shape model

of each bronchi and uses the shape to detect obstructions. The CT volume is

then searched for bronchi beyond the obstruction. No previous segmentation

method has the ability to detect the point of obstruction and segment beyond

the obstruction. This method was evaluated on a limited number of cases with

obstructions but shows potential to improve general airway segmentation meth-

ods, and has other applications beyond airway analysis.
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4. Extraction of airway features to represent normal and pathological

shape variation

Clinical studies indicate that there is potential to use airway shape changes to

assist in the detection of tuberculosis. No studies have attempted to detect TB

using airway shape changes or use statistical shape models to model pathology

in the airways. Features based on variation of a statistical shape model built on

regions of the airway are extracted. These features are compared to bronchial

radius derived features.

5. Detection of paediatric tuberculosis in regions of the airway using a

statistical shape model of airway shape changes

A classifier was built using the airway shape features representing 90% of the

variation in a TB and non-TB dataset. The classifier was applied to regions

of the airway tree and performed well on an validation set. This showed that

a statistical shape model of normal and abnormal variation of the airway tree

can be used as an additional test to assist in the detection of TB and has the

potential to be extended to other airway pathology. From a clinical perspective,

it confirms previous observations that lymphadenopathy has a high specificity

for TB in paediatric patients.

6. Projection of the 3D airway model to assist in the segmentation and

analysis of the airways in chest radiographs

Airway segmentation of radiographs is a challenging problem with limited suc-

cess. In this thesis, the CT derived 3D statistical shape model is used along with

features on the radiograph to optimise the fit of a 3D model to the 2D radio-

graph. This novel approach to 2D airway segmentation shows promising results

and there is potential to improve the method by using multiple radiographic

views.
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2
Automated Airway Segmentation

Abstract. Airway segmentation from CT is a challenging topic given partial volume

effects, image variability and difficulty in establishing a gold standard segmentation. This

chapter extends existing airway segmentation methods and is used to segment the airways

in CT examinations from paediatric patients. The method initially segments the larger

bronchi. A 3D morphological filtering approach is then used to enhance and segment the

smaller bronchi, and finally a leak removal step is used to remove false branches. The

method was evaluated on an adult dataset as part of the EXACT’09 airway segmentation

challenge, and used as the basis for further airway analysis discussed in this thesis. The

algorithm performed fairly well in the challenge. The method achieved an FPR (lower

is better) of 1.27%, out of the 15 teams, 4 teams performed better (lower FPR) and 10

teams performed worse. At this FPR, the branch detected was 43.5% (9 teams performed

better and 5 teams performed worse).

Computed tomography (CT) plays an important role in the evaluation of sus-

pected airway involvement in disease, and clinicians have a number of tools at their

disposal to visualise that airway. The tools currently available at clinical work stations

include: multiplanar reconstruction, maximum and minimum intensity projections,
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shaded surface display and volume rendering (VR) (Rubin, 2003). These tools are

used for general visualisation of CT volumes and are not specific to airway analysis.

VR provides a 3D visualisation of the volume by assigning different colour, intensity

and opacity values to the different Hounsfield unit (HU) values of the CT volume.

This visualisation can be adjusted to enhance tissues of interest. An internal view

with flythrough can also be simulated with virtual bronchoscopy (an example work-

flow is discussed by (Siegel, 2003)). These methods essentially label the HU range

corresponding to the airways. The large difference between the HU value of tissue

regions and the HU value of air filled regions means that larger bronchi can be ex-

tracted using a simple threshold (Sonka et al., 1996). However, non-airway air filled

regions may also rendered, and smaller bronchi may not be rendered due to partial

volume effects. These methods also require considerable manual interaction. Air-

way segmentation methods have been developed to overcome these challenges and

automate airway extraction.

Airway segmentation from CT images is used to determine which voxels in the

volume belong to the airway anatomy and which voxels belong to other anatomical

structures. This can be a binary classification or probabilities can be assigned to each

voxel in the CT volume. Thus, while VR can visualise the airways, by identifying the

regions belonging to the airway, airway segmentation can be used to form the basis of

more advanced airway analysis methods and be used to improve visualisation of the

airway for the clinician. This is particularly important for smaller bronchi that may

have similar intensities to the lung regions due to partial volume effects, and require

advanced identification methods.

This chapter proposes a morphology based airway segmentation algorithm de-

veloped to detect the airways in paediatric CT scans. Current airway segmentation

algorithms are outlined in Section 2.1. Requirements for the segmentation method are

listed in Section 2.2. The method is outlined in section 2.3, which includes detection

of a seed point in the trachea, segmentation of the main bronchi until bifurcation,

filtering and segmentation of the smaller bronchi, and false branch detection. The seg-

mentation method is applied to adult and paediatric CT examinations; the datasets

are presented in Section 2.4. Section 2.5 presents an evaluation of the segmentation

method. The method was evaluated as part of the EXACT’09 airway segmentation

competition on an adult dataset (Section 2.5.2) and then applied to a paediatric air-
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way dataset (Section 2.5.5). A discussion of the advantages, limitations and future

development of this algorithm is presented in Section 2.6.

2.1 Background

Airway segmentation is an active research field and a number of algorithms have been

developed. However, this is a challenging field and there is still plenty of room for

improvement; one evaluation showed that no algorithm (even with considerable false

positives) was able to segment more than 77% of the reference airway branches (Lo

et al., 2009c).

Segmentation algorithms tend to have a number of steps in common but often

use very different mathematical approaches at each step. An outline of the steps in a

typical airway segmentation algorithm is shown in Figure 2.1. The first step defines

a seed point. This point is usually in the trachea and is either manually selected or

found by identifying a cross-section of the trachea. The second step is often a filter

used to enhance the airways before a threshold is applied. Once possible airways have

been identified, then a region-growing method is used to select the connected airway

region. Rules are often applied to restrict incorrect growth into non-airway regions or

remove leaks, either as part of the region-growing procedure or in the following step.

Algorithms often focus on one of these steps; some algorithms may ignore the airway

enhancement stage and focus on rule-based methods to select the correct airways,

whereas others may not apply any rule-based restrictions on the region-growing but

use sophisticated airway enhancement filters.

Airway segmentation is a challenging task because the resolution of the CT scan

limits the visibility or results in discontinuities of the smaller bronchi. Challenges

facing correct airway segmentation include lack of a “gold standard”, partial volume

effects and image artefacts. A “gold standard” segmentation is difficult to estab-

lish and the most commonly used methods of evaluation include expert annotations,

although these are time consuming, phantom studies or comparisons to other algo-

rithms. Partial volume effects have a large influence on the smaller bronchi because

a voxel can contain a combination of airway wall and lumen (Sonka et al., 1996).

The volume can also be affected by movement artefacts, such as breathing and heart

motion, and reconstruction artefacts.
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Determine
start point

Enhance
airways

Grow region
containing airways

Restrict growth
based on rules 

Figure 2.1: General steps in an airway segmentation algorithm

The main airways are easier to segment than smaller bronchi because of a well-

defined wall and, therefore, greater contrast between wall and the lumen. Simple

thresholding methods are often used to extract them while more sophisticated meth-

ods are used for the smaller bronchi. This saves processing time and allows the

algorithm to be tailored more specifically to the smaller airways (as demonstrated by

Sonka et al. (1996))

A selection of important airway segmentation methods can be loosely grouped

into the following categories: adaptive thresholding (Mori et al., 1996), adaptive

threshoding with branch analysis (Schlathölter et al., 2002; Swift et al., 2002; van

Ginneken et al., 2008), fuzzy connectivity (Tschirren et al., 2005a), rule base seg-

mentation (Park et al., 1998; Sonka et al., 1996), morphology based connection cost

(Fetita et al., 2004) and morphological filtering (Aykac et al., 2003; Kiraly et al., 2002;

Pisupati et al., 1996). A thorough review of the subject can be found in a chapter

on airway segmentation that was written by the author of this thesis and published

in Lung Imaging and Computer Aided Diagnosis (El-Baz and Suri, 2011).

Aykac et al. (2003) and Pisupati et al. (1996) perform greyscale morphological

reconstruction on each CT slice to extract the regional minima and, therefore, enhance

the airways. The greyscale morphological reconstruction is applied to each slice using

a range of marker images that have been created from greyscale closing the original

image with a range of structuring elements (SE) . The SEs are chosen to be a similar
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size to the cross section of the airways present in the slice in order to enhance them.

The reconstructed image is subtracted from the original image and a threshold is

applied. 2D seeded region growing is then applied slice by slice to extract the airways

from the binary volume. Pisupati et al. (1996) applied their method to CT images of

canine lungs, while Aykac et al. (2003) applied their method to CT images of human

lungs.

Morphology based methods have also been applied by Prêteux et al. (1999) and

Fetita et al. (2004). Fetita et al. (2004) use an algorithm that calculates the connection

cost between points in an image – that is, the smallest threshold that will provide a

binary path between two points – to enhance the airways in CT slices. Once enhanced,

the images are not thresholded and 3D reconstruction is performed on the greyscale

images using a local energy minimisation algorithm. This energy function takes into

account the tree topology of the airways as well as the greyscale intensity. There are

a number of other non-morphology based methods have been used to segment the

airways.

2.2 Segmentation requirements

The airway segmentation procedure, developed in this chapter, is used to form the

basis of an airway shape analysis algorithm. Therefore, the key requirements of the

airway segmentation are as follows:

• Accurate segmentation of 3 generations of bronchi

– Requirement to include bronchi of interest for determining lymphadenopa-

thy involvement (Trachea, LMB, RMB, RUL and BI) (see Chapter 6)

– Child branches of bronchi of interest are also required to determine branch

completeness (see Chapters 3 and 5)

• No false branches in the initial generations

• Adaptable to variation in scan parameters

– Resolution

– Scanner characteristics
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• Adaptable to patient variation

– Small airway cross sections in patients ages 0 - 5 years

– Severe stenosis and deformation in some cases

– Variation in lung opacity due to consolidation, cavitation and hyperinfla-

tion of lung lobes

Therefore, an algorithm was developed specifically to segment the airways in pae-

diatric CT examinations with a low false positive rate. A morphological filtering

approach was selected because of the ability to tailor the filter to airway size (i.e.

smaller paediatric airways) and distinguish airways circular airways from lung re-

gions surrounded by consolidation that may have a similar size a greyscale value.

The underlying morphological filter used in this method is similar to that of Aykac

et al. (2003) and Pisupati et al. (1996). However, this method is extends the analysis

to 3-dimensions (a requirement for accurately extracting bifurcation points), extends

the region growing approach, introduces a separate approach for the main bronchi

and develops a false branch removal algorithm. This method is adapted to segment

airways in lower resolution paediatric CT examinations. The authors are not aware

of other airway segmentation methods that have been applied to paediatric airways.

2.3 Method

An overview of the segmentation algorithm is shown in Figure 2.2. The first step

involves: detection of the start slice, detection of a slice containing the trachea, and

then detection of the trachea itself. Next, the trachea and main bronchi are segmented

using a threshold and region growing approach while restricting the segmentation to

the main bronchi to avoid leaking into false regions. Morphological filtering is applied

in the axial, coronal and sagittal planes to enhance the smaller bronchi, and finally

region growing with leak removal is performed.
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Figure 2.2: Outline of the airway segmentation algorithm. Steps include: identification of
the trachea, segmentation of the main bronchi, morphological enhancement and segmenta-
tion of the remaining bronchi, and finally a region growing and leak removal step.
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2.3.1 Initialisation

2.3.1.1 Lung region detection

This airway segmentation method requires an initialisation point at the start of the

trachea. To select this point automatically, the slices are orientated using the DICOM

header information and the lung regions in the coronal cross section are roughly

segmented by thresholding for air regions in the coronal plane through the centre of

the volume (air filled regions were classified as regions below -500 HU)1. Connected

regions in the slice were identified and the largest connected region not connected to

the edge of the volume was identified as 1 or both lungs. More sophisticated lung

detection methods exist (van Rikxoort et al., 2009) but this method was satisfactory

for identifying a start point in the trachea.

This step is included because the large variation in the region covered by a CT

scan, makes it difficult to select an appropriate starting slice without knowing the

location of the lung fields. In this algorithm 10 slices above the upper most point of

the segmented lung region was chosen as the starting axial slice for the segmentation.

Figure 2.3a) shows the connected components in the centre slice that were used to

determine the start and end slice. Figure 2.3b) and c) show the start and end slices

identified from the lung volume, and the axial view of the start slice.

This method uses the centre coronal section to initialise the scan. Therefore, the

start position on the trachea may vary depending on the position of the patient.

If improved stability is required for the anatomical location of the start slice then

entire lung field could be extracted for improved accuracy. However, the start slice

only defines the point from which the segmentation is performed. The system also

includes a manual option for selecting the start and end slice, if a different start point

is required for another study, as shown in Figure 2.4.

2.3.1.2 Trachea detection

After an axial slice containing a cross section of the trachea has been selected, the

trachea is found in that slice by applying a threshold to identify air filled regions.

1Certain cases did not conform to the HU scale and, therefore, if the slice contained only values
above -500 HU, the threshold was set to MinVal+500
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Figure 2.3: Automatic identification of start and end slice positions for the airway segmen-
tation algorithm
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Figure 2.4: Manual selection of start and end slice positions

There are sometimes a number of regions that may have the appearance of a trachea

in the slice (see Figure 2.5). Therefore, extracted regions are compared using position,

size and compactness in a similar way to that of existing methods (Aykac et al., 2003;

Mori et al., 1996)2 Compactness (C ) was calculated from perimeter (P) and area (A)

as C = P 2

A
. The segmentation of the starting slice is used as a seed for the rest of the

segmentation.

2.3.2 Segmentation of Trachea and Main Bronchi

Once the trachea is identified in the initial slice, then thresholding and region growing

are applied to the axial slices using the segmentation from the previous slice as seed

points. This is applied progressively to each slice from the start of the trachea.

Segmentation using this greyscale thresholding approach is limited to the larger

branches. If smaller branches are included in the segmentation, the similar greyscale

intensities of the small bronchi and lungs will cause leaking into the lungs. Therefore,

for each step, the newly segmented region is evaluated and steps are taken to stop

the segmentation of smaller vessels. If the segmented region is more than double

the area of the previous slice then a leak is considered to have occurred through

2The area parameter was calculated as the area of the object once the optimal area – chosen to
be 400 pixels – was subtracted. The position of the object was defined as the euclidean distance
from the ideal position – which was chosen to be (200, 256). These parameters were found from the
training set.
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TracheaPotential
misclassification

Figure 2.5: Trachea and potential misclassifications in the initial slice

smaller bronchi into the lungs. This leak is excluded by finding the centre-of-mass

(CM) and the maximum radius (r0) of the segmented region in the previous slice, and

iteratively reducing the radius and recalculating the CM until a specified compactness

(C = P 2

A
) is reached; the circular region specified by r and CM are used to restrict

the segmentation of the current slice (see Figure 2.6).

The position of the bifurcation of the trachea and main bronchi is estimated by

labelling the number of connected regions in each slice that have been seeded by one

connected region in the previous slice. If two separate regions are seeded by one

connected region in the previous slice then bifurcation is considered to have occurred.

When the trachea bifurcates, each of the main bronchi are followed and when the

main bronchi bifurcate then the procedure is stopped. Due to the smaller branches,

for paediatric airway segmentation, the thresholding approach is only applied until

the first bifurcation (the start of the RMB and LMB).

2.3.3 Morphological Filtering

To detect bronchi beyond the trachea, LMB and RMB, morphological greyscale re-

construction is applied to all CT slices to extract local minima and, therefore, enhance

the airways.

Greyscale reconstruction is an extension of binary reconstruction. Binary recon-

struction is the application of successive dilations within objects of a binary image as
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Figure 2.6: Excluding leaks in trachea and main bronchi segmentation by restricting the
region growing step based on compactness of the previous slice. r0 is the maximum radius,
ri and cmi are the radius and centre-of-mass at the ith iteration

shown below (Vincent, 1992, 1993):

ρB(X) = lim
n→+∞

δ
(n)
B (X) (2.1)

where

δ
(1)
B (X) = (X ⊕K)

⋂

B (2.2)

and δ
(n)
B is δB applied n times:

δ
(n)
B (X) = δB ◦ δB ◦ ...δB(X) (2.3)

The marker (X ) is a subset of the mask (B) and is made up of seed points – that

is, where the dilation starts in the object (Vincent, 1992, 1993). B is generally the

image that is being operated on. K is a SE used in the dilation and ⊕ is the dilation

operator.

For greyscale reconstruction, a marker and mask image are used where every pixel

in the marker image has a pixel intensity less than or equal to the intensity of the

corresponding pixel in the mask image (Vincent, 1992, 1993). The marker and mask
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images are then thresholded, over a range of thresholds, and binary reconstruction

is performed on each threshold. The maximum pixel intensities of the binary re-

constructed images form the greyscale reconstructed image. With a good choice of

a marker image this method can be used to create a reconstructed image with the

intensity peaks (local maxima) removed. This can then be subtracted from the orig-

inal image to enhance the peaks. Figure 2.7 is an illustration of airway enhancement

by greyscale reconstruction in 1 dimension. Figure 2.7a shows the mask and marker

greyscale images, with the reconstructed image represented by the shaded area. Fig-

ure 2.7b shows the difference image created by subtracting the reconstructed image

from the original mask image.

In this study, the greyscale closing of the image of interest is used as the marker

image:

X = B •D = (B ⊕D)⊖D (2.4)

where X is the marker image, B is the original image (used in reconstruction as

the mask image) and D is the SE. D will control the shape of the marker image and,

therefore, which airways are enhanced in the reconstruction. Applying morphological

reconstruction a number of times to a slice using different SE sizes to produce marker

images will enhance airways of different cross sections. Therefore, morphological

reconstruction was applied using marker images produced using a range of SEs. The

smallest SE chosen in this study is a 4-connected binary SE. Larger SEs are created

by applying successive dilations to the smallest SE i.e. Dn = D⊕D⊕ ...⊕D ntimes.

As described earlier, reconstruction is applied using the range of marker images

for each slice. As a closed image will have greater or equal intensity values compared

to the original image, the reconstruction is applied using the inverted marker and

mask images. The reconstructed image is the inverted again. Each reconstructed

image is subtracted from the original image to enhance airways. These subtracted

images are thresholded and the union of the thresholded images provides a binary

slice with all possible airway locations. The threshold value (T ) is obtained from

this threshold fraction (Tfrac) in terms of the minimum (Pmin) and maximum (Pmax)
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(a) Morphological greyscale reconstruction in one dimension. The marker image has
a greyscale value less than or equal to the mask image and is chosen to extract local
maxima of a circular appearance

(b) The difference image is found by subtracting the reconstructed image from the
original image.

Figure 2.7: Airway enhancement using morphological reconstruction to enhance circular
regions in CT slices
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greyscale values in the reconstructed slice:

T = Tfrac ∗ (Pmax − Pmin) + Pmin (2.5)

Morphological filtering was applied slice by slice to the volume. Figure 2.8 shows

each step of the morphological filter.

Aykac et al. (2003) and Pisupati et al. (1996) applied a similar filtering to each

axial slice. We apply 3D filtering i.e. to each slice in the axial, coronal and sagittal

plane. This is because of poor detection of branches parallel to the slice if just one

direction is used. The axial plane is filtered last in order to enhance segmentation

of bifurcation areas that can appear large and non circular from the axial plane if

branches are parallel to the slice. Smaller branches parallel to the axial plane are,

therefore, segmented first leaving more circular bifurcation areas that are detected

with the axial filter (see Figure 2.9).

2.3.4 Region Growing and Leak Removal

Once possible regions have been detected using morphological filtering and recon-

struction, bounded space dilation is applied to the binary volume as a region growing

technique from the initial seed point (Masutani et al., 1998).

Closed space dilation is particularly useful because airway branching can be mon-

itored while the region growing is taking place. Closed space dilation is described as

follows:

X ⊕B K = XN = (XN−1 ⊕K)
⋂

B = ... (2.6)

where X = X0 is the initial seed, B is the region being segmented, K is the kernel

and ⊕ is the morphological dilation operation (Masutani et al., 1998).

This method is seeded by the initial slice in the trachea, and 3D closed space

dilation is applied until the segmentation volume does not increase using a 3× 3× 3

SE. 2D closed space dilation, which is used previously (Aykac et al., 2003), is applied

to each slice individually and requires a number of forward and backward passes

through the whole volume to capture the 3D data. While 3D dilation allows any

complexity of topology to be followed, we specify a constraint that the object remains

26-connected.
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a) b)

c) d)

e)

Figure 2.8: Greyscale closing and reconstruction applied to a CT slice a) Original image
b) closing the image with a single structuring element c) morphological reconstruction d)
difference image e) threshold
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a) b) c)

Figure 2.9: Multidimensional morphological filtering is used to enhance non-circular bifur-
cation points by first identifying vessels of a circular appearance in the coronal and sagittal
directions. a) cropped CT slice with a non-circular airway region b) coronal and sagittal
filtering c) axial filtering

In some cases other objects that are of a similar size and shape to that of the

airways are enhanced by the morphological reconstruction and remain when thresh-

olded. If after thresholding, the object is 26-connected to the airway region it will be

segmented; this causes leaks. Leaking is prevented by applying a restriction on the

dilation. The change in cross section of each branch can be monitored by calculating

the area of the“growth front”of each branch, where the growth front is the area added

to the connected region for each iteration of the closed space dilation (Masutani et al.,

1998). The growth front of each branch is calculated by labelling each 26-connected

from the difference between the bounded dilation and the previous iteration (Figure

2.10b). Each connected region is assigned the label of the connected region from the

previous step (Figure 2.10c). If two 26-connected region are assigned the same label

then a bifurcation has occurred and new labels are created. To detect leakage where

the volume increase substantially, the volume of the last 3 dilations for each branch

are compared to the 3 dilations before that. If the ratio of the volumes is above a

specified threshold – chosen to be double the size – then closed space dilation along

this branch is stopped.

This segmentation method results in a binary labelled volume identifying the

connected airway tree. Figure 2.11 shows an example of the airway segmentation

in a coronal slice and Figure 2.12 shows an example airway segmentation with bone

rendering of a 20 month patient.
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Figure 2.10: Leak removal step: identification, labelling and analysis of the changes in
the growth front of each branch. a) shows detection of the bifuraction from the connected
regions of the growth front b) new growth fronts are generated c) growth fronts are assigned
labels based on connectivity to previous growth fronts unless bifurcation occurs

Figure 2.11: Airway segmentation overlayed on a coronal CT slice. In this case there is at
the bifurcation between the trachea and RMB.
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Figure 2.12: Airway segmentation of a CT scan from a 20 month patient with rendering of
surrounding boney tissue
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2.4 CT Datasets

A number of CT datasets were used throughout this study. Adult CT scans were used

for training and evaluation of the segmentation algorithm as part of the EXACT’09

challenge. A number of datasets containing paediatric CT scans of patients with and

without tuberculosis (TB) were collected and segmented. The GOSH 2010 paediatric

nonTB CT dataset and TYG 2010 paediatric TB CT dataset were used as a training

set, and the Tygerberg 2012 paediatric TB and non-TB CT dataset were used as a

test set in Chapters 3, 4 and 6.

2.4.1 EXACT’09 Adult dataset

This dataset was used for evaluation of airway segmentation algorithms as part of

the EXACT’09 airway segmentation challenge. The set consisted of 20 training CT

scans and 20 test CT scans with various pathology. The dataset ranged from healthy

volunteers to patients severe airway and lung pathology (Lo et al., 2009c).

CT scanners used in this dataset included the Siemens Sensation 64, the Siemens

Sensation 16, Siemens Volume Zoom, Philips Mx8000 IDT 16, Philips Brilliance 16P,

Toshiba Aquilion and the GE LightSpeed 16 (Lo et al., 2009c). Slice thickness ranged

from 0.6 to 1.25 mm. In the test set Case 21 and Case 38 were taken at inspiration

while the remainder of the test set were taken at expiration.

2.4.2 GOSH 2010 paediatric nonTB CTs

A paediatric Chest CT dataset was acquired in 2010 from Great Ormond Street

Hospital, London, UK and consisted of 37 CT scans of patients without TB. The

mean age (with standard deviation) was 3.8± 1.8 years.

These images were acquired using the Siemens SOMOTOM Definition and the

pixel size in each slice varied from 0.28 mm to 0.51 mm and the slice thickness varied

from 1 mm to 1.5 mm.

63



CHAPTER 2. AUTOMATED AIRWAY SEGMENTATION

2.4.3 Tygerberg 2010 paediatric TB CTs

A paediatric Chest CT dataset was acquired in 2010 from Tygerberg Hospital, South

Africa and consisted of 52 scans of patients with TB. The mean age was 1.8 ± 2.2

years.

These images were acquired using the Siemens SOMATOM Sensation 40, Siemens

SOMATOM Emotion 6 and the Toshiba Aquilion. The pixel size varied from 0.24

mm to 0.54 mm and the slice thickness varied from 0.6 to 1.5 mm.

2.4.4 Tygerberg 2012 paediatric TB and non-TB CTs

Another paediatric Chest CT dataset was acquired in 2012 from Tygerberg Hospital,

South Africa and was chosen to contain both TB and non-TB patients. There were

42 non-TB patients with a mean age of 3.1 ± 3.8 years and 48 TB patients with a

mean age of 2.4± 2.8 years.

These images were acquired using the Siemens SOMATOM Sensation 40 and the

Siemens SOMATOM Emotion 6. The pixel size in each slice varied from 0.21 - 0.54

mm and the slice thickness varied from 0.6 to 1.5 mm.

Non-TB patients in the dataset include children with the following conditions:

parenchymal lung disease such as interstitial lung disease, congenital lung malforma-

tions which affect the parenchymal tissue and not the airways; suspected lung metas-

tases; and infective conditions other than TB. This will include cases of bronchiectasis,

cystic fibrosis and pleural disease. Patients with suspected TB undergo a CT scan

when there are signs or symptoms of airway involvement and therefore, all TB cases

in this dataset have suspected airway involvement.

2.5 Evaluation and Results

Building a “gold standard” validation set is difficult because of the time required to

manually segment a CT scan, and smaller bronchi are easily missed. However, expert

manual segmentations remain the best available form of validation. For example,

Aykac et al. (2003) use 8 manually segmented scans for evaluation. Other methods

of evaluation include using a phantom (Tschirren et al., 2002), evaluation of a subset
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of axial slices containing the segmentation by an expert (Fetita et al., 2004) or com-

parison of manual airway labels to automated airway labelling from the segmentation

(van Ginneken et al., 2008). Many segmentation algorithms are also evaluated quali-

tatively by comparing the 3D segmentation and the number of bronchi segmented to

the CT volume (Kiraly et al., 2002).

This section evaluates the airway segmentation algorithm that has been outlined

in this Chapter. This algorithm was developed in order to form the basis of a paedi-

atric airway analysis. Due to the lack of paediatric gold standard data, the method

was evaluated on an adult dataset as part of the EXACT’09 airway segmentation

challenge. This section discusses the EXACT’09 airway segmentation challenge, the

evaluation of this method using the challenge and general results of the challenge.

Paediatric airway tree segmentations are also presented.

2.5.1 EXACT’09 challenge (adult patients)

Evaluation of airways segmentation methods is a difficult task because different CT

datasets and varying performance measures are used by each group; the CT datasets

often vary considerably in resolution and image quality. The Pulmonary Image Anal-

ysis workshop 3 at MICCAI 2009 held the EXACT’09 airway segmentation challenge

in an attempt to evaluate various airway segmentation methods. 22 teams registered

for the challenge and 15 submitted results for evaluation (Lo et al., 2009c). Lo et al.

(2009c) evaluated each team’s performance based on the accuracy of segmentations

of a set of 20 CT volumes. A gold standard was developed for each volume and

compared to the segmentation from each algorithm.

40 CT scans were selected as the EXACT’09 dataset, and divided into 20 train-

ing images and 20 testing images. The CT images contained a selection of different

acquisition conditions and pathologies. These CTs were provided to the teams and

the segmentations from each team were submitted to EXACT’09 for evaluation. A

reference segmentation was found for each test CT scan by combining the segmenta-

tions from each algorithm and using trained observers to remove false branches. Each

segmentation from each team was evaluated by comparing the segmentation to the

appropriate reference segmentation.

3www.lungworkshop.org
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The segmentations were divided into individual branches for evaluation. Branch

points were found using a fast marching algorithm as a region growing method. A

number of slices, from each branch, containing the image and segmentation informa-

tion, were then viewed by trained observers and evaluated. More than one observer

viewed each branch and labels of “correct”, “partly wrong”, “wrong” or “unknown”

were assigned. The labelled branches from all segmentation algorithms were com-

bined and correct voxels were used to form the reference segmentation for each test

CT volume. Each segmentation was then evaluated by comparing each segmented

branch to the reference segmentation (Lo et al., 2009c).

2.5.1.1 Limitations of the evaluation

This evaluation achieved a complex task of using a common method of evaluation for

a number of airway segmentation methods. However, there are some limitations that

have to be considered when viewing the results:

• Ground truth images for the training set were not available to the teams –

making it difficult to optimise parameters of the segmentation algorithm

• A binary segmentation was submitted. Different methods had varying sensi-

tivities and false positive rates (FPR) . Without probabilities assigned to each

voxel or segmentations at multiple FPRs, a ROC curve can’t be plotted, mak-

ing it difficult to compare the sensitivity of two segmentation algorithms with

different false positive values.

2.5.2 EXACT’09 Segmentation evaluation

The algorithm parameters were adjusted using the 20 training images and these pa-

rameters were fixed for the 20 test images.The parameters were qualitatively adjusted

by comparing the segmented airway tree to the CT volume. The number of dilations

used to create the largest SE for filtering the axial, coronal and sagittal slices were

set to 12, 6 and 6 respectively. Therefore, for each slice in each orientation SEs from

a 4-connected binary SE to an SE after 6 or 12 dilations are used to generate marker

images. The threshold fraction used for the axial, coronal and sagittal slices were set

to 0.3, 0.4 and 0.4 respectively.
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Figure 2.13: Adult airway segmentation with bone rendering (from the EXACT’09 training
set)

The segmentations of the test images were submitted to EXACT’09 for analysis.

Figure 2.13 shows an example airway segmentation with bone rendering. Figure 2.14

shows the segmentations from the 20 test images. Green (lighter regions) shows the

correct segmentation and blue (darker regions) shows falsely classified regions.

Table 2.1 shows the accuracy of the algorithm for the 20 test cases provided.

The meaning of each heading is as follows: branch count is the number of branches

detected correctly, branch detected is the proportion of branches detected compared

to the ground truth, tree length is the sum of all correctly detected branches, tree

length detected is the tree length compared to the ground truth, leakage count is the

number of correct regions bordering incorrect regions, leakage volume is the volume of

regions wrongly detected, and false positive rate is the fraction of wrongly detected

regions out of all detected regions. branch detected and tree length detected are

similar measures – with the difference that detected branches of any length will make

the same contribution to the former while correctly detected longer branches will

contribute more to the latter. Ideally an algorithm would achieve a high proportion

of branch detected and tree length detected with a low false positive rate. The ground
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(a) Case 21 (b) Case 22 (c) Case 23

(d) Case 24 (e) Case 25 (f) Case 26

(g) Case 27 (h) Case 28 (i) Case 29

(j) Case 30 (k) Case 31 (l) Case 32

Figure 2.14: Segmentation of test cases for the EXACT’09 airway segmentation competition
(green is correctly segmented and blue is false positive)
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(m) Case 33 (n) Case 34 (o) Case 35

(p) Case 36 (q) Case 37 (r) Case 38

(s) Case 39 (t) Case 40

Figure 2.14: Segmentation of test cases for the EXACT’09 airway segmentation competition
(green is correctly segmented and blue is false positive)
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truth is determined from union of segmentations from all teams, where false branches

are removed by clinical experts. Thus, the proportion of correctly detected branches

was low for all teams. This algorithm produced a fair result; the mean number of

branches detected was 43.5%, the tree length detected was 36.4% and the number of

false positives was 1.27%.

The time taken to process a case varied according to computer specifications and

the number of slices containing airways. The mean and standard deviation of the

time taken to complete each of the 20 cases was 71± 18 minutes using a single core

of a quad core 2.83GHz system. The algorithm evaluated in this competition was an

initial version. Considerable improvements were made to the speed of the algorithm

(discussed in Section 2.5.4).

2.5.3 EXACT’09 challenge general results

Figure 2.15 and Figure 2.16 show the Branch Detected and Tree Length Detected

plotted in terms of the False Positive Rate for the 15 teams. The number in each

figure refers to the team number and each algorithm is outlined in Table 2.2. Our

algorithm is highlighted in red. The plots show that at the FPR (lower is better)

of 1.27, out of the 15 teams, 4 teams had a lower FPR (better) and 10 teams had

a higher FPR (worse). At this FPR point, 9 teams had a higher sensitivity (better)

and 5 teams had a lower sensitivity (worse).

The lack of an ROC makes it difficult to compare performance of algorithms at

different specificities. However, teams 5, 13 and 15 achieved a very good performance

in the competition. Team 13 use a gradient vector flow method that is applied after

an initial segmentation and centreline extraction step (Bauer et al., 2009). Team 15

develop an interactive airway segmentation method (Tschirren et al., 2009). Initially a

fully automated airway segmentation is performed and then the user is provided with

a framework to add or remove branches. The organisers of the airway segmentation

competition (Team 5) also presented a method (Lo et al., 2009a). This method

achieved a very low FPR and used an airway appearance model trained on previously

segmented airways. The low FPR means that this method would be useful as a

basis for the paediatric airway analysis but a trained model might not be accurate

for severe forms of pathology that are not found in the training set. It is also worth
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Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 101 50.8 55.7 50.4 0 0.0 0.00
CASE22 76 19.6 48.4 14.7 0 0.0 0.00
CASE23 33 11.6 23.9 9.2 0 0.0 0.00
CASE24 86 46.2 63.4 39.0 0 0.0 0.00
CASE25 123 52.6 91.4 36.3 3 11.6 0.06
CASE26 55 68.8 37.8 57.5 9 16.4 0.23
CASE27 83 82.2 55.6 68.7 2 95.2 1.01
CASE28 79 64.2 58.4 53.3 7 121.3 1.34
CASE29 92 50.0 62.6 45.4 3 17.9 0.19
CASE30 94 48.2 66.6 43.6 2 48.2 0.51
CASE31 91 42.5 59.0 33.6 4 1487.4 11.71
CASE32 45 19.3 35.8 16.5 5 803.2 6.94
CASE33 85 50.6 59.6 40.5 0 0.0 0.00
CASE34 140 30.6 90.3 25.2 3 32.4 0.17
CASE35 82 23.8 53.8 17.4 0 0.0 0.00
CASE36 148 40.7 147.0 35.7 1 1.9 0.01
CASE37 65 35.1 46.9 26.4 1 94.5 0.76
CASE38 73 74.5 44.1 66.3 4 57.5 0.65
CASE39 155 29.8 111.0 27.1 1 1.4 0.01
CASE40 116 29.8 80.7 20.9 5 256.1 1.71

Mean 91.1 43.5 64.6 36.4 2.5 152.3 1.27
Std. dev. 32.3 19.1 28.2 17.1 2.6 362.7 2.91

Min 33 11.6 23.9 9.2 0 0.0 0.00
1st quartile 73 29.8 46.9 20.9 0 0.0 0.00
Median 86 44.4 58.7 36.0 2 17.1 0.18
3rd quartile 123 64.2 90.3 53.3 5 121.3 1.34
Max 155 82.2 147.0 68.7 9 1487.4 11.71

Table 2.1: Evaluation measures for the twenty cases in the test set. The table columns are
as follows: branch count is the number of branches detected correctly, branch detected is the
proportion of branches detected compared to the ground truth, tree length is the sum of the
length of all correctly detected branches, tree length detected is the tree length compared
to the ground truth, leakage count is the number of correct regions bordering incorrect
regions, leakage volume is the volume of regions wrongly detected, and false positive rate is
the fraction of wrongly detected regions out of all detected regions.
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noting that a considerable proportion of the airway tree was not segmented by any of

the algorithms, which means there is room to improve airway segmentation methods.

The algorithm with the highest sensitivity detected 76.5 % of the airway with a FPR

of 15.6 %.

Method Summary
1 Morphological filtering and region growing

Irving et al. (2009)
2 Morphological filtering, Connection cost

and Region growing
Related to Fetita et al. (2004)

3 Restricted region growing
4 Branch edge detection and region growing
5 Airway appearance model and airway/vessel guide

Method was submitted by EXACT’09
challenge evaluator(Lo et al., 2009c)

6 Region growing with revaluation of ROI
7 Tube detection and knowledge based region growing
8 Adaptive region growing
9 Local centricity region growing
10 Region growing with leak detection
11 Wave propagation and template matching
12 Adaptive region growing
13 Gradient vector flow
14 Multi threshold with topological restrictions

Method based on van Ginneken et al. (2008)
15 Region growing

User manually corrects branches
Based on Mori et al. (1996)

Table 2.2: Segmentation methods evaluated in EXACT’09 (Lo et al., 2009c)
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Figure 2.15: Branches detected vs false positive rate for the algorithms in the EXACT’09
airway segmentation competition. Red shows our method.

Figure 2.16: Tree length detected vs false positive rate for the algorithms in the EXACT’09
airway segmentation competition. Red shows our method.
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2.5.4 Improvements to method after EXACT’09

The EXACT’09 challenge evaluated an initial version of the airway segmentation

algorithm. Since the evaluation, a number of modifications were implemented to

mainly improve the running time (but also accuracy).

Underlying algorithms were reimplemented more efficiently in Matlab and un-

derlying Matlab function were chosen that took advantage of multi-core processing.

The morphological filter – the bottleneck in the code – was limited to axial slices

containing the lung region.

The structuring element used in the method is initialised as a 4-connected binary

image and successive structuring elements are created by dilating the SE with the

original SE. This results in the SE having a diamond shaped appearance. The ac-

curacy of extracting circular airways was reduced by this shape and the structuring

elements were replaced by pixel approximations of circular SEs. This improved the

accuracy of the algorithm.

2.5.5 Paediatric airway segmentation

The number of dilations used to create the largest SE for filtering the axial, coronal

and sagittal slices were set to 9, 5 and 5 respectively (from [12, 6, 6] in the adult set).

The threshold fraction used for the axial, coronal and sagittal slices were set to 0.3,

0.45 and 0.45 respectively (from 0.3, 0.4, 0.4 for the adult cases). These parameters

were chosen using a subset of the training set.

The time taken to segment each airway in the paediatric test set was 168±57s. A

considerable improvement over previous run times due to the modifications discussed

in Section 2.5.4. However, some of the improvement is due to the smaller volumes

used for paediatric patients.

Paediatric airway segmentations were evaluated qualitatively by comparing the

segmentation to the CT volumes. Segmentations generally performed well up to the

fourth generation of bronchi and in some cases many more generations. Obstructed

branches could not be segmented using this method.

Figures 2.17 and 2.18 show example segmentations from paediatric CTs of pa-

tients with and without TB. As shown, the leak removal step removes false branches

but can also reduce the number of generations that were segmented. The vast major-
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ity of leaking in the segmentation algorithm occurs in the peripheral branches (See

Figure 2.17h) and this method is effect for these cases. Some branches have almost

completely obstructed branches due to severe airway pathology. The False branch

detection algorithm can remove bronchi beyond a severe stenosis due to the nature

of the branch radius monitoring algorithm (See Figure 2.18h).

Some cases have completely obstructed bronchi (as shown in the Figures). This

method extracts a completely connected airway tree and is not able to segment ob-

structed branches.
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(a) S (a) LR (b) S (b) LR

(c) S (c) LR (d) S (d) LR

(e) S (e) LR (f) S (f) LR

Figure 2.17: Examples from the Tygerberg 2012 non-TB paediatric evaluation set (age
2.4± 2.8 years) (S: Segmentation, LR: Segmentation with leak removal step)
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(g) S (g) LR (h) S (h) LR

(i) S (i) LR (j) S (j) LR

(k) S (k) LR (l) S (l) LR

Figure 2.17: Examples from the Tygerberg 2012 non-TB paediatric evaluation set (age
2.4± 2.8 years)(S: Segmentation, LR: Segmentation with leak removal step)
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(a) S (a) LR (b) S (b) LR

(c) S (c) LR (d) S (d) LR

(e) S (e) LR (f) S (f) LR

Figure 2.18: Examples from the Tygerberg 2012 TB paediatric evaluation set (age 3.1 ±
3.8 years)(S: Segmentation, LR: Segmentation with leak removal step). Some cases have
complete obstruction of a bronchus
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(g) S (g) LR (h) S (h) LR

(i) S (i) LR (j) S (j) LR

(k) S (k) LR (l) S (l) LR

Figure 2.18: Examples from the Tygerberg 2012 TB paediatric evaluation set (age 3.1 ±
3.8 years)(S: Segmentation, LR: Segmentation with leak removal step). Some cases have
complete obstruction of a bronchus
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2.6 Discussion

This method was developed for the segmentation of the airways in paediatric patients

and segmentations will be used in the modelling and detection of airway deformation

and stenosis in later chapters. The method was adapted to adult airway segmentations

by choosing suitable algorithm parameters using the EXACT’09 training set. Test

set segmentations were submitted to EXACT’09 for evaluation.

In comparison to other “state-of-the-art” algorithms (Figures 2.15 and 2.16) our

segmentation algorithm (Group 1) performed fairly well. Especially considering the

early development stage of our algorithm at the time of submission. The plots show

that at the FPR (lower is better) of 1.27%, out of the 15 teams, 4 teams performed

better (lower FPR) and 10 teams performed worse. At this FPR, the branch detected

was 43.5% (9 teams performed better and 5 teams performed worse). By removing

(or reducing) the effect of the false branch removal step in the algorithm, the branch

detected could be improved at the expense of the FPR. Therefore, for future studies, a

ROC curve of branch detected vs FPR might be more helpful in evaluating algorithms.

However, there could be difficulties modifying some algorithms to generate values at

multiple FPRs.

The method was slow in the EXACT’09 challenge but modifications were made

to the algorithm to considerably improve performance. The benefit of this method is

the low false positive rate. This is required for paediatric TB cases because exudate

in the lungs increases the likelihood of segmentation leaks. Exceptions are CASE31

and CASE32 that have relatively high leakage.

Some algorithms with better performance on the adult dataset are discussed in

Section 2.5.3. These methods could be incorporated into the system and evaluated

on paediatric Chest CT scans. However, sufficient performance is achieved with the

algorithm for the paediatric airway analysis presented in later chapters.

A weakness of this method is in identifying airway cross-sections where partial

volume effects and other artefacts give the appearance of airway wall discontinuities.

The method could be improved by a more sophisticated region growing algorithm

(after morphological filtering) that is able to use a number of consecutive slices at

each step and is, thus, not affected by single slice discontinuities. This effect is

apparent in some smaller branches. Small discontinuities in the segmentation for
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CASE 22, 23, 32 and 35 removed a number of large branches when region growing

was applied leading to poorer results. Later chapters focus on airway analysis of the

first few generations of bronchi and, therefore, is not affected by this weakness and

this is left to future developments of the algorithm.

The algorithm was applied to the paediatric airway dataset and used for further

airway analysis. In later chapters, analysis is only performed on the early generations

of bronchi (including the Trachea, RMB, RUL, BI, LMB, LUL and LLL) because these

are the bronchi most likely to be affected by enlarged lymph nodes from paediatric

pulmonary TB. Therefore, the segmentation algorithm is only required to segment

the larger bronchi for the airway analysis performed in this thesis.

Qualitative observations of the paediatric segmentations showed good perfor-

mance. However, paediatric airway segmentation is made more challenging by the

considerably smaller airway size which means a larger impact due to voxel size, and,

therefore, partial volume effects. Figure 2.18 shows airways from TB patients. Lym-

phadenopathy causes complete obstruction of the airways in some cases (LMB in cases

a, f, k). The airway segmentation method is not able to segment beyond completely

obstructed airways but a later chapter develops a method to segment disconnected

airway branches. In future, a thorough evaluation of the performance of the segmen-

tation algorithm on paediatric cases may be useful for comparison, if suitable “gold

standard” reference segmentations could be obtained.

2.7 Conclusion

Airway segmentation from CT is a challenging topic given partial volume effects, im-

age variability and difficulty establishing a gold standard segmentation. This chapter

proposes a method to segment the airways using a morphology based segmentation al-

gorithm. An efficient adaptive threshold method is used for the larger branches while

3D morphological filtering is used for the smaller branches. This approach is based

on morphological filtering but introduces novel branch restriction and leak removal

steps. A novel application of the filtering method to 3D is also presented by initially

filtering in the coronal and axial directions, and mapping these enhanced regions to

the greyscale value of the airway wall, in order to aid segmentation of branch points,

during the axial filtering.
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This algorithm, like most other airway segmentation algorithms, segments a con-

nected airway region from the trachea. In a number of cases, severe pathology leads

to complete obstruction of the major airways. A method to segment beyond complete

obstructions is discussed in Chapter 5.
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2.8 Chapter summary

This chapter presents an airway segmentation algorithm:

• Requirements

– Segment paediatric airways from CT

– Low false positive rate

– Effective for scans with severe pathology

• Airway Segmentation

– Initialise segmentation by identifying trachea

– Segment main bronchi

– Morphological filter and segmentation of smaller bronchi

– Leak removal step

• Evaluation

– Evaluated on adult dataset as part of EXACT’09 challenge

– Applied to TB and non-TB paediatric dataset

• Application

– Basis for airway analysis algorithm

– Basis for obstructed airway segmented algorithm
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Airway Structure

Abstract. This chapter presents methods to detect the airway branching structure from

airway segmentations. An iterative thinning approach is used to extract the one-voxel

thick skeleton of the airway. Bifurcations and individual branches are detected from the

connectivity of each voxel in the skeleton. False branches are then removed using the

length, location and connectivity of each branch. Once an accurate branching structure is

obtained, heuristics are used to assign an anatomical label to each branch and a distance

transform is used to label the surface mesh of the airway. This structure provides a basis

for more advanced airway analysis.

The detection of the branching structure of the airways is an important step

before performing more complex airway shape analysis. This chapter discusses the

implementation of methods for airway centreline detection and branching structure

detection from 3D airway segmentations. This can be used to guide branch measure-

ments, airway registration and statistical airway models, which are discussed in later

chapters.

A number of methods have been developed previously for airway centreline detec-
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tion and branch labelling (outlined in Section 3.1). Our implementation is discussed

in Section 3.2. The branching structure of the airways is identified by: skeletonisation

to extract the branch centrelines (Section 3.2.1), bifurcation point analysis (Section

3.2.2), branch connectivity labelling (Section 3.2.3), false branch removal (3.2.4) and

anatomical labelling of the seven main branches (Section 3.2.5). This chapter fo-

cusses on the implementation of structure analysis methods and lays the foundation

for more sophisticated airway analysis in later chapters.

3.1 Background

3.1.1 Skeletonisation

Skeletonisation of the airway can be used to extract bifurcation points and branch

centrelines – a one voxel thick approximation of a line that travels through the centre

of any branch cross section. This is generally used to identify the branching structure

of the airways and, therefore, to label each branch. There are also a number of

other benefits to extracting the centreline, such as, directing virtual bronchoscopy

and identifying airway cross sections. There are a number of skeletonisation methods.

However, many cannot produce a 1-voxel thick centreline, which is required for branch

point analysis. This section will focus on examples of algorithms that have been

successfully applied to airway segmentations from CT images.

3.1.1.1 Region growing methods

Some methods identify the centreline as part of the airway segmentation step (Bülow

et al., 2004; Schlathölter et al., 2002; Swift et al., 2002; van Ginneken et al., 2008).

Swift et al. (2002) calculate points on the centreline by finding the centroid of bound-

ary points in the cross section of the airway. Schlathölter et al. (2002) grow the

skeleton as a product of a branch point detection step. Extraction of the centreline is

performed in a similar way by Wood et al. (1995). The centreline is derived from the

centroid of the wave-front, and bifurcation points are identified from the centrelines of

the three branches forming the intersection. A seed point at the base of the trachea,

in the segmented airway, is used to initialise the method and is labelled 0. Voxels
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that are 26-connected to the 0 voxel are labelled 1 and unlabelled voxels that are

26-connected to voxels labelled 1 are labelled 2 etc. This is repeated until all voxels

are labelled and the centroid is found, for each connected set of voxels with the same

label, to create a centreline.

3.1.1.2 Thinning methods

Region-growing methods are not the only way to extract the centreline from the

airway tree. Palágyi et al. (2003, 2006) developed an algorithm that extracts the

centreline by iteratively thinning the segmentation. Each surface voxel is analysed in

terms of orientation and connectivity, and voxels are removed that do not affect the

structure of the shape, until a 1-voxel centreline remains. This method has also been

used successfully by other researchers (Tschirren et al., 2002).

The algorithm proceeds as follows: a base point is found as the centre of the first

slice containing the trachea and this point is preserved. Next, surface voxels of the

segmentation are identified as points that are 6-connected to 0 voxels (background

voxels) in one direction. They are grouped as U (up), N, E, S, W and D (down) voxels

depending on the direction of the 6-connectivity to a background voxel. Simple points

are points that can be removed without changing the topology of skeleton and line-

end points are points that are 26-connected to only one other 1 voxel (an airway

voxel).

Simple points that are not line-end points are selected and iteratively removed for

each directional grouping U, N, E, S, W and D. For a voxel i in the current directional

grouping:

• Check if i is a simple point or a line end point

• Remove i if it is a simple point and not a line end point

• Also if the point is a line-end point but the number of deleted 6-connected

neighbours is greater or equal to t then also delete i

t controls the sensitivity of the algorithm to surface effects and branching. This

algorithm acts to iteratively thin the airways down to a 1-voxel thick skeleton and is

repeated until no more changes occur.
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Surface irregularities can still cause false branches so a pruning method is used to

remove false branches by cutting circularly connected regions and removing branches

based on their length and distance from the airway surface.

Mori et al. (2000) also use 3D region thinning to find the centreline and label

the branching structure. They overcome the problem of false branching by observing

that generally false branches are short and have no child branches. They also found

that branches with a large diameter tended to have more false branches. Therefore,

branches that have no child branches are examined and if the branch is shorter than

a threshold (tlength) or if the branch is connected to a branch that has a diameter

greater than a threshold (tdiameter), then the branch is deleted. tlength and tdiameter

are found experimentally.

3.1.1.3 Bifurcation points

Bifurcation points can be found from the centrelines of the region growing methods

or the skeleton of the thinning methods. The bifurcation region can be defined as the

region where a bronchus divides into two child bronchi – where the bifurcation point

is the centre of this region.

Extracting the centreline from the wavefront means that the branches are discon-

nected in the bifurcation region (see Figure 3.1a). Wood et al. (1995) overcome this

problem by fitting lines to each of the three branches forming the bifurcation and use

a minimisation algorithm to find the best intersection of these lines, which is labelled

as the bifurcation point (see Figure 3.1b). The middle 70% of each branch is used

to fit the line because of noise in the centreline around the bifurcation point. As

thinning methods produce a 1-voxel thick skeleton, the branch points can be found

from the connectivity of that skeleton.

However, there may be variability in the exact location of the bifurcation point

because of variation between algorithms and airway shape. This will not affect the

label of each bronchi but can affect the shape of the end of each branch (see Figure

3.6b), which can in turn influence a shape based model derived from the branches.

Additional methods are proposed in Section 4.2.4 to overcome these challenges for

statistical shape models.
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(a) (b)

Figure 3.1: Bifurcation point detection from the wavefront a) the branches are disconnected
in the bifurcation region b) a minimisation algorithm can be used to find the best point of
intersection.

3.1.2 Anatomical branch labelling

Once the airway has been segmented and branch points found, branches can be

matched to their anatomical labels. This is necessary for almost any analysis because

it allows branch specific comparisons to be made. Examples include locating the

position of abnormalities in the airway tree, and using the branching structure of the

airway to identify lung structures.

Tschirren et al. (2005b) outline a method for matching airway branches to anatom-

ical labels. They assume the first three or four generations of the airway can be

matched and further generations differ for each individual. Their method uses the

centreline to convert each airway tree into a graph where vertices represent branch

points. An associative graph is then built between an airway of interest and a labelled

anatomical model and used to find the best match between the trees.

The centreline and branch points are used to represent the airways as a directed

acyclic graph where the vertices represent endpoints and branch points, and the

vertices are connected by edges that are representative of the connectivity of the

airway tree (as shown in Figure 3.2).

The association graph is used to match an airway tree to an anatomically labelled

population average. An association graph (Gassoc) is a measure of the similarity be-
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Figure 3.2: Graph representation of the airway tree

tween two graphs (G1 and G2) and has a vertex for every possible pairing of vertices

consisting of vertices from G1 and G2. An edge connects two vertices in Gassoc if

the relationship between the corresponding vertices in G1 is the same as that be-

tween the vertices in G2. Tschirren et al. (2005b) use inheritance and topological

distance to define this relationship. Therefore, in the association graph maximum

clique (the largest subset of vertices where every vertex is connected to every other

vertex) represents the set of vertices of G1 and G2 that have the same relationship.

This maximum clique represents the best match between the two trees and forms the

basis of Tschirren et al. (2005b)’s algorithm. However, a number of steps are taken

to reduce the computational complexity of the task of finding the maximum clique.

The anatomical model, which is matched to each airway, is a population average,

created from a dataset of labelled segmentations. A number of measures are used

to define the anatomical model, including individual measures of branch length and

orientation, as well as measures between branches, of inheritance (e.g. parent and

child), angle between segments, spatial relationship and topological distance.

Every branch is represented as a start vertex, end vertex and edge. Edges between

vertices are only added to the association graph if the inheritance relationship is

the same and the topological distance is similar for a branch of the tree and the

population average. Vertices and edges in the association graph are then assigned

weights according to the measures discussed earlier. Vertices and edges with low

weights are removed to reduce the computational complexity of finding the maximum

clique. The maximum clique is then found which represents the match of the branches
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from the airway tree to the anatomical model. Therefore, using a population average,

labels can be assigned to each branch of a segmented tree.

An alternative method is discussed by van Ginneken et al. (2008). They use

a training set of manually labelled airway segmentations, and probabilities based

on orientation, average radius and angle are then used to label branches. Starting

from the trachea, each branch is labelled based on: the label of the parent and the

probabilities of the child and grandchild branches.

Mori et al. (2000) also propose a template matching algorithm. Their method

is similar to that of Tschirren et al. (2005b) in that they use branch position and

hierarchy to match the branches. However, their labelling is based on minimising a

global fitting function instead of using an associative graph.

Their approach is divided into two levels of detail: a) labelling of the right main

bronchus (RMB) and left main bronchus (LMB) b) labelling the smaller bronchi.

Candidate RMB branches and LMB branches are found by identifying branches with

the trachea as the parent and an end point that is less than k from a template

‖Qbi −Qtemplate‖ < k (3.1)

where Qbi is the location of the end point of branch Bi and Qtemplate is the location

of the template end point. If more than one candidate exists then an evaluation

based on the child branches is performed. Other potential branches exist because the

skeletonisation method can create false branches (Mori et al., 2000) and this algorithm

is designed to minimise the risk of breaking labelling at the RMB/LMB level.

Smaller branches are labelled by comparing each branch to a template branch

using an energy function E, where:

EBiKj
=

dBi · dKj

‖dBi‖‖dKj‖ (3.2)

where Bi is the branch under consideration, Kj is the labelled template branch,

and dBi and dKj are the directions of Bi and Kj, respectively. Therefore, E is greatest

when Bi is in the same direction as Kj, and this is used to label a branch.

Therefore, starting from child branches of the main bronchi, each branch (Bi)

is compared to template branches with the same parent branch. Bi is assigned the

label which yields the highest E. If that label has already been assigned to another
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branch then the branch with the highest E is assigned the label and it is removed

from the other branch. This method is applied iteratively until all branches have been

labelled. Finally, if more than one candidate LMB or RMB exists then each candidate

is tested and all child branches matched. The candidate with the largest sum of all

energy from the child branches is selected. This method successfully labelled 93 % of

branches that were successfully segmented and skeletonised.

It is difficult to determine the best anatomical labelling method from the above

studies. All studies achieve at least a 90% accuracy in assigning anatomical labels

to segmented branches. Mori et al. (2000) achieve a 93% accuracy on a 14 patient

validation set while Tschirren et al. (2005b) achieve a 97% accuracy on a 17 patient

dataset containing normal and pathological cases. van Ginneken et al. (2008) use

a much larger 170 patient dataset with a 90% accuracy. These methods only label

the segmented branches and, therefore, the results are dependant on variation in the

dataset and segmentation algorithm.

3.2 Method

The previous section discussed methods available for airway skeletonisation and branch

labelling. In this section the implementation of methods to identify the centreline,

bifurcation points and branch labels in our algorithm are discussed.

3.2.1 Airway Skeletonisation

Palágyi et al. (2003)’s skeletonisation method is used for the extraction of the cen-

treline1. There are two steps to the extraction of the medial skeleton: topological

correction and centerline extraction. Morphological closing removes small holes, bays

(surface deformations) and cavities in the segmentation2. These small changes would

cause unwanted changes such as false branches. Once the segmentation has been cor-

rected, the centerline is extracted by thinning (as described in Section 3.1.1.2). Each

surface voxel is analysed in terms of orientation and connectivity. If the surface voxel

1Palágyi et al. (2003) provided C++ code for the skeletonisation.
2Morphological closing and opening was applied using a 6-connected structuring element. Larger

structuring elements increased the risk of changing the topology of the segmentation for severely
stenosed branches.
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is classified as a simple point – a point that does not alter the topology of object

– and is not an end point, then it is removed. This is repeated iteratively until no

more voxels are removed. This results in a one voxel wide centreline. Examples of

the airway centreline are shown in Figure 3.5.

3.2.2 Branch Point Detection

Branch points – the point at which the airway bifurcates – are found by analysing the

connectivity of the centreline; the neighbourhood of each voxel is used to determine

the connectivity. The input is the skeleton of the airway and the output is a list of

branch points.

For each voxel in the skeleton, the 26-connected neighbourhood is found and

the central voxel (the voxel of interest) is removed. If the number of 6-connected

regions in the neighbourhood is greater than two, then a branch point has been found.

Figure 3.3a illustrates a section of the airways in the 26-connected neighbourhood of a

bifurcation voxel. Figure 3.3b shows the three 6-connected regions and the bifurcation

point. Note that this method will only work for skeletons that are one voxel thick.

(a)
26-neighbourhood

(b) 6-connected neighbours

Figure 3.3: Representation a branch point in a one-voxel thick skeleton
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3.2.3 Branch connectivity labelling

The skeleton and bifurcation points are used to assign a unique label to the centre-

line voxels of each branch in the segmentation. Starting from the first voxel in the

trachea, neighbouring voxels in the skeleton are given the same label unless there is a

bifurcation, in which case, unlabelled neighbouring voxels are given a new label. An

example of a labelled skeleton is shown in Figure 3.5. The order of the voxels in each

branch is also recorded. Simplified pseudocode is presented for the branch labelling

procedure using a one voxel thick branching centreline in Figure 3.4.

Start seed point

Add seed point to point list (PL)

WHILE PL is not empty

current point (CP) is first point on PL

extract the 26-neighbourhood (NE) of CP

IF any NE are branch points (BP)

FOR each 26-connected neighbour of the BP

IF not labelled

assign new label

record label of parent branch

add newly labelled points to PL

END IF

END FOR

ELSE NE are not branch points

FOR each NE

IF not labelled

assign same label as CP

add newly labelled points to PL

END IF

END FOR

END IF

remove CP from PL

END WHILE

Figure 3.4: Simplified pseudocode for the branch labelling algorithm
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3.2.4 Pruning

False branching sometimes occurs because of surface deformation (particularly when

pathology is present). By identifying end branches (branches that end with a terminal

vertex), a simple false branch removal algorithm can be developed that identifies end

branches shorter than a given threshold, from the centreline, and removes them. This

method assumes the false branches will be shorter than other branches. A problem

with the assumption of branch length is that false branches from the main bronchi

are often longer than true branches further down the tree. In our dataset we also

have cases of complete obstruction of a branch – resulting in short centrelines. These

need to be preserved in order to correctly identify the branching structure.

Therefore, the threshold was varied depending on the branch position. The algo-

rithm was applied with 3 different thresholds to produce three pruned trees. Using

knowledge of the tree connectivity, a new tree was constructed using the trachea

from the first pruning and identifying the LMB and RMB labels; using the LMB

and RMB from the second pruning and remaining branches from the third pruning

(see Appendix B for a step by step example). After pruning, the branch relabels and

connectivity are reassigned.

Figure 3.5 shows the labelled branch centrelines identified during the skeletoni-

sation of the airway. Figure 3.5a and Figure 3.5c show two examples of the airways

before pruning and Figure 3.5b and 3.5d show the relabelled skeleton after pruning.

The numbers in the figure of the unique labels assigned to each branch for storing

connectivity. Note that the false branch in Figure 3.5a may be longer than other

end branches further down the airway tree – requiring the multi-threshold approach

discussed in the previous paragraph. The false branch is caused by a surface artefact

in the segmentation (shown in Figure 3.6b).

3.2.5 Anatomical branch labelling

Section 3.1.2 lists some sophisticated anatomical labelling techniques where each seg-

mented branch is automatically assigned its anatomical label. This becomes very chal-

lenging when dealing with pathology that may cause completely obstructed branches

(see Chapter 5). As discussed in Chapter 1, lymphadenopathy affects the main

bronchi including the trachea, RMB, LMB, RUL, BI, LLL and LUL. These branches

94



CHAPTER 3. AIRWAY STRUCTURE

(a) Before pruning (patient 1) (b) After pruning (patient 1)

(c) Before pruning (patient 2) (d) After pruning (patient 2)

Figure 3.5: Centreline identification from a segmented airway tree (red, green and blue are
used to illustrate distinct airway branches)
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were labelled using a simple rule based method; the following rules were used to assign

anatomical labels to these bronchi:

• the RMB and LMB are connected to the trachea

• the RMB is right of the LMB

• the RUL and BI are connected to the RMB

• the RUL is above the BI

• the LLL and LUL are connected to the LMB

• the LUL is above the LLL

This was sufficient to label the branches of interest for our case.

3.2.6 Airway surface labelling

In order to perform airway shape analysis, a mesh of the airway surface was used

to represent each airway where each face was labelled according to the branching

structure of the airway. The triangular surface mesh was constructed from the voxel

segmentation using a marching cubes algorithm

Each mesh face (m ∈ M) was assigned a branch label by assigning the label of

the closest voxel of the labelled skeleton (sc):

sc := argmin
s∈S

||m− s|| (3.3)

l(m) := l(sc) (3.4)

where M is the set of all mesh face centroid coordinates, S is the set of all voxels in

the skeleton and each voxel has a branch label (l(s) ∈ L). The mesh representing

each branch is then defined as Bj := {m|l(m) = lBj
} where lBj

is the label of a given

branch Bj

This method is effective for projecting the branching structure onto the surface.

However, this labelling criterion introduces a number of issues when finding corre-

spondence. Mesh faces in a bifurcation region are assigned to the connected branches
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but these labels are influenced by branch shape – leading to variation at the bifurca-

tion points. Figure 3.6 shows airway segmentations with branch labels (from the CT

of a 20 month old patient and 6 year old patient). The red, green and blue colors are

used to distinguish the connected branches. As shown in Figure 3.6b, in some cases,

the closest point labelling approach leads to variability in the labels at bifurcation

points (this is further developed in Chapter 4). Also shown, some cases may have

some leaking in the segmentation in the peripheral branches; this does not affect the

branching structure of earlier branches and can, therefore, be ignored.

3.3 Results and discussion

This chapter discusses the processing of a binary voxel segmentation in order to

identify the airway structure. Figure 3.7 illustrates the smoothed centreline, airway

segmentation and a coronal slice showing the lung fields. This structure is used as

the basis for further analysis in the following chapters.

The pruning method uses a set of branch length thresholds to define false branches

in each region of the airway. All end branches with a branch length of less than the

defined threshold are removed. If more than one threshold is specified for a region

then the threshold is repeated multiple times. This is useful when a false branch

bifurcates to smaller false branches. Threshold values were determined qualitatively

from the training set and are shown in Table 3.1. The rows represent the three

extracted pruned trees and the columns represent the multiple thresholds for each

region.

Region T1(voxels) T2(voxels)
Trachea 12 6
RMB-LMB 10 3
remaining branches 3 2

Table 3.1: Threshold values for pruning

The pruning method is effective for many cases and allows the centreline and

branch points to be identified automatically. However 39 of the 179 cases still required

some user interaction to remove a false branch or identify a missing branch, from the
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(a) 20 month old patient (centreline shown in Fig 3.5d)

(b) 6 year old patient (centreline shown in Fig 3.5b)

Figure 3.6: Airway branch labelling from centreline (red, green and blue are used to illus-
trate distinct airway branches)
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centreline, by choosing the branch to be removed or preserved. The majority of these

cases are caused by pathology causing extreme changes to the airway shape (see

Appendix B). Methods to automate detection of obstructed branches are discussed

in Chapter 5.

Algorithms in later chapters require a skeleton with a direction that is represen-

tative of the direction of the branch. As discussed earlier, smoothing was used to

overcome noise introduced by the voxel resolution. In the datasets used in this the-

sis, no kinks in the skeleton were found that may interfere with later analysis, and,

therefore, no further smoothing was required.

As discussed in Section 3.1, airway skeletonisation and branch labelling is well

established. This chapter implements a number of existing methods with some novel

additions such as the multi-thresholded pruning approach. Implementing these exist-

ing algorithms in this computer assisted detection framework required a number of

modifications to generate suitable results. However, the main purpose of the work in

this chapter is to act as a bridge between airway segmentation and more advanced

airway analysis techniques that are presented in later chapters.

3.4 Conclusions

Methods to detect the airway branching structure from airway segmentations have

been outlined in this chapter. These include an iterative thinning approach to extract

the skeleton, false branch removal, branch point detection and branch labelling. This

structure provides a basis for more advanced airway analysis.
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Figure 3.7: Smoothed centrelines with segmentation and coronal CT slice. The centrelines
may not connect at bifurcation points because each branch is individually smoothed. The
smoothing algorithm is discussed in Section 4.2.1 of the next chapter.
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3.5 Chapter Summary

This chapter discusses the implementation of skeletonisation and branch point

detection in order to extract the branching structure of the airway:

• Airway skeltonisation to identify a one voxel thick centreline

– Palágyi et al. (2006) skeletonisation

• Branch point detection

– Use the connectivity of the 1-voxel thick line

– 26-neigbourhood of each voxel

– 6-connectedness of each neighbour

• Branch labelling

– Assign labels to the centreline voxels of each branch

– Generate new labels at bifurcation points

• Prune false branches using a multi-threshold approach

– Remove end branches with length less than a threshold T

– Apply to regions of the airway for using three different threshold

– Use branch connectivity to create final pruned tree from 3 prunings

• Use simple branch relations to assign anatomical labels to:

– Trachea, LMB, RMB, RUL, BI, LUL, LLL
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4
Airway registration and surface

correspondence

Abstract. This chapter presents a novel approach to develop corresopondence between

multiple airway segmentations. The branching structure of the airway along with the

orientation of the smoothed centreline is used to map local reference frames equidistantly

along each branch. These reference frames are used to place landmark points on the

airway surface. The landmark points along with a thin-plate-splines warp are used to

align a template mesh to each airway. Local mesh alignment is then performed to match

each vertex of the template to the airway surface. The optimal method was able to

register a simplified template mesh to the airway dataset with a mean error of 2.1± 0.9%.

Errors larger than half a voxel contributed 0.22± 0.49%.

Statistical shape models require correspondence in order to quantify shape vari-

ation. This chapter proposes a method to develop centreline and dense mesh corre-

spondence between segmented airway trees. The input to this method is a branching

centreline and surface mesh (Chapter 3) and the output is a new centreline and sur-

face mesh where each centreline point and mesh vertex has a corresponding point and
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vertex on every other airway – from which a statistical shape model can be built.

Section 4.1 discusses shape correspondence and Section 4.2 proposes a method

for airway tree correspondence. Section 4.2.1 uses the resampled centreline to derive

corresponding points onto the airway surface. These points are used to guide a

thin-plate-spline warp of a template mesh onto each airway shape (Section 4.2.2).

Finally point-to-point correspondence is developed by locally aligning the meshes

(Section 4.2.3). Section 4.2.4 defines airway regions for developing local statistical

shape models. Criteria for evaluating the template mesh registration are discussed in

Section 4.3 and the results are presented in Section 4.4.

This is a fully automatic method that can be used to develop correspondence of the

whole airway tree or just a single branch segment. Novel methods that are proposed

in this chapter include: automation of landmark point generation, the application

of a thin-plate spline warp to the branching airway tree, extension of closest point

alignment for stenosed tubular structures, and a method to consistently identify local

regions of the airway tree. The author is not aware of any other methods to develop

mesh correspondence between segmented airways from different patients.

4.1 Background

In the previous chapter, the following topics have been discussed: skeletonisation,

extraction of a surface mesh, and labelling the voxels and surface mesh according

to the branching structure, and from this description of the airways we could ex-

tract branch measurements. For example, Palágyi et al. (2006) use the branching

structure to perform simple measurements on each branch including: branch length,

branch volume, branch surface area and average branch radius. These measures are

calculated from the skeleton length, the number of voxels belonging to a branch and

the voxel dimensions. The branch volume is taken as the sum of the number of voxels

in a branch multiplied by the dimension of a voxels, and the length is calculated from

the sum of voxels in the skeleton. These are useful measures but are restricted by

using average measures for the whole branch. Tschirren et al. (2005a), on the other

hand, perform a number of airway measurements along each branch by measuring

the diameter of a section of the branch that is perpendicular to the skeleton. These

forms of analysis do not require correspondence between airways.
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Beyond simple branch measurements, there is potential to use statistical models

to detect pathological deformation and stenosis in the airway tree from a dataset of

airway segmentations. This is a relatively unexplored approach to airway tree anal-

ysis. Heimann and Meinzer (2009) provide an overview of statistical shape models

in 3D. The main representations that are suitable for quasi-tubular objects – that

is, objects showing similarities to tubes – include point distribution models (PDM)

(corresponding points placed on the surface) and medial models (objects represented

by centrelines and radii). Other methods include Fourier surfaces and spherical har-

monics.

Active shape models (ASM), which apply PDMs to the problem of segmentation,

are an example of a method for determining the prominent variation by modelling

changes within a set of training shapes. Each shape in the training set is described

by a set of corresponding landmark points. Therefore, a key requirement to create

statistical shape models is accurate correspondence between the landmark points of

each object in the training set. Otherwise, the model will include variation due to

poor correspondence between shapes.

Determining shape correspondence is challenging due to the variation of biolog-

ical structures. Often very different approaches are applied to different structures.

The airways can be modelled as a branching quasi-tubular object and methods that

determine the correspondence between tubular objects include the manual placement

of landmark points, cylindrical parametrisation and a medial representation.

Hutton et al. (2003) and Paulsen et al. (2002) both use PDM models to analyse

shape changes, in the face and ear canal respectively. They use a set of sparse

landmarks which are selected manually and then perform thin plate spline (TPS)

warping to a template to obtain a dense surface correspondence between the object

surfaces. Dense correspondence is made by mapping the vertices of the template

shape to the closest points on the surface of the warped objects. Hutton et al. (2003)

use the mean landmarks as the template while Paulsen et al. (2002) use one of the

training objects.

de Bruijne et al. (2003a,b) adapt ASMs for the analysis and segmentation of

tubular objects. Landmark points are created by an expert placing equidistant points

on edge contours of each slice of a training segmentation. While the focus of this

method is not on the landmarking procedure, the disadvantage of this approach is
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that, by only considering axial cross-sections, it assumes that the tubular object is

orthogonal to the slice at all times. Manually drawn contours can be time consuming

but in the case of ASMs, which are used to segment new objects, it is only required

for creation of the training set. For evaluating shape changes (such as in our case),

landmarks are also required for all cases and, therefore, it is beneficial to automate

the landmarking procedure. In a related method, Deligianni et al. (2006) derive

landmarks from the centroid of each axial slice in an airway segmentation. Each

branch is manually defined, and the intersection between the surface and the cross-

section from each centroid are used to define landmarks. This method is also limited

by requiring manual interaction and choosing the branch centroids from the axial

slice; accuracy is reduced when the branches are not perpendicular to the axial slices.

Huysmans et al. (2006) also use a PDM to analyse tubular objects but take a

different approach when developing correspondence. Initially an iterative closest point

(ICP) algorithm is used to align the shapes by obtaining a best match of the two

shapes. They use cylindrical parametrisation to develop correspondence, whereby

the mesh representing the object is iteratively collapsed, while minimising the error

between the collapsed shape and the original shape, until the entire object is only

represented by 6 vertices. The 6 vertices are then transformed to represent a cylinder

and vertices are split to rebuild the complete mesh. All objects in the dataset are

parametrised in this way to establish correspondence. Pinho et al. (2007) use the

method of obtaining correspondence developed by Huysmans et al. (2006) to assess

local tracheal stenosis. They do this by estimating the healthy trachea of a patient

with tracheal stenosis. They apply the method to 9 shapes and placed 1024 landmarks

on each shape. However, this method does not appear to be a practical approach for

the analysis of branching tubular objects or large deformation. The assumption that

the underlying shape can be approximated by a cylinder means that it is difficult to

extend this analogy to a branching structure and severe deformation would lead to

distortion of the correspondence.

An alternative representation is the medial model. Pizer et al. (2003a,b) use

discrete medial representations (m-rep) of shapes. The basic component of a discrete

m-rep model is the atom and a set of atoms represent a shape. An atom consists

of a hub, which is the centre of the maximal sphere, and two spokes to represent

the two radii whose end points are tangent to and intersect with the surface of the
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Figure 4.1: m-rep representation of a tubular object

object being modelled (as shown in Figure 4.1). Conditions restrict folding in the

surface of this model. Principal component analysis (PCA) cannot be applied to this

representation because it is not Euclidean, and therefore, Principal Geodesic Analysis

(PGA) is developed, which applies PCA using geodesic distance on the manifold

(Fletcher et al., 2004). This method shows potential for modelling complex shapes

using a heirachy of m-rep models but has not (as of yet) been applied to branching

tubular structures.

Tubular structures would most likely be represented by a single chain of m-reps.

The m-reps are defined by the two intersections of a maximal sphere; local surface

variation as well as local stenosis would have a great effect on the representation,

causing instability. The size of the m-rep also means that local protrusions may not

be captured and will require additional subfigures (connected local m-rep models).

Choosing constraints that will allow a robust representation of the airways and using

subfigure m-reps consistently across the dataset could be challenging for branching

tubular structures with severe pathology.

These methods have introduced different representations of biological shape that

allow registration of multiple cases. The shapes can also be treated as point sets

to be registered. Current state-of-the-art methods for registering sets of points in-

clude robust point matching (Zheng and Doermann, 2006) and coherent point drift

(Myronenko and Song, 2010). Robust point matching uses a graph representation of

the points to preserve local relationships during non-rigid registration. Relaxation

labelling is then used to find the optimal fit. Coherent point drift registers two point

sets by treating one set as Gaussian Mixture Model centroids, and fits these cen-

troids using maximum likelihood and the posterior probabilities. A regularisation

term is used to maintain coherence between neighbouring points during registration.
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These methods are powerful for registering two point sets with an unknown trans-

form. However, in the problem posed in this thesis, the branching structure and

airway centreline can be used to provide corresponding landmark points that can be

used to generate a transform, and therefore, better constrain the problem.

In this section, a number of methods to register tubular shapes have been dis-

cussed. These include methods that use correspondence of anatomical surface land-

marks (Hutton et al., 2003; Paulsen et al., 2002), cylindrical parameterisation (Huys-

mans et al., 2006; Pinho et al., 2007), medial representations (Pizer et al., 2003a,b)

and cross section landmark generation (de Bruijne et al., 2003a; Deligianni et al.,

2006). Cylindrical parameterisation and medial representations are powerful tech-

niques but are problematic when it comes to branching tubular structures. The

airways lack consistent anatomical landmarks on the surface which could be used for

registration of a surface mesh. Instead, the centreline, branch cross sections and bi-

furcation points define the airway structure for modelling distortion of the airways in

space as well as local stenosis. Therefore, surface landmarks points generated from the

airway structure are the most useful for correspondence, which is an extension of the

cross section landmark generation approaches. However, these previous approaches

required manual labelling of landmarks or branch points, and assume branch cross

sections are parallel to axial slices, which must be overcome for automated statistical

airway analysis.

4.2 Method

A method for determining the correspondence between segmented airway trees is

introduced, using the projection of pseudo-landmark points onto a surface mesh, and

using the pseudo-landmarks to align a template mesh, and finally developing point

to point correspondence by local alignment. This method takes advantage of the

airway structure to create correspondence, allowing varying degrees of stenosis and

deformation to be represented.
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4.2.1 Surface point projection

A mesh of the airway surface was used to represent each airway and each face was

labelled according to the branching structure of the airway. The triangular surface

mesh was constructed from the voxel segmentation, and then smoothed using an

implicit fairing method (Desbrun et al., 1999). The smoothing was required to remove

noise due to the resolution of the CT scan. Voxel resolution has more of an impact

in paediatric airway segmentation compared to adults because the smaller airway

volume means that the airways are represented by fewer voxels.

Corresponding landmarks are required to align the airways in the dataset. How-

ever, the airways do not have clear landmarks between bifurcations. Therefore,

pseudo-landmarks were generated using the topological structure and tubular shape

of the branches. The centreline of the airways is represented as a one-voxel thick

branching medial line (see Chapter 3). The voxel coordinates of the centreline were

then interpolated by linearly interpolating between each set of neighbouring voxels to

achieve more detailed representation of the centreline. A moving average smoothing

filter was applied to the interpolated points to remove noise added to the centreline

from the voxel resolution. The branch is then resampled evenly m times to form

landmark points (pi) on the centreline (see Figure 4.2). At each resampled point (pi),

the tangent to the centreline was calculated and the intersection between the vectors

(orthogonal to the tangent) and the airway surface are calculated. This allowed cor-

responding landmarks to be generated on the surface of the airways based on airway

topology and branch curvature .

The unit vector tangent to the centreline at each resampled point (pi) was found

from:

T (pi) =
p′i(t)

|p′i(t)|
(4.1)

p′i(t) =
pi(t+ h)− pi(t− h)

2h
(4.2)

where each pi can be represented as a function in the vicinity of the landmark and

pi(t+ h) is a small progression along the centreline.

Euler angles (x-convention) was then used to construct a rotation matrix that can
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Figure 4.2: The voxel representation of the centreline, the interpolated centreline (blue), and
the smoothed and resampled centreline (red). The tangent is calculated for each resampled
point (pi)

be used to map orthogonal vectors onto the centreline (see Figure 4.3). Any rotation

can be specified by three angles (Weisstein, b) and, therefore, the general rotation

(A) is described by three rotation matrices:

A = BCD (4.3)

109



CHAPTER 4. AIRWAY REGISTRATION AND SURFACE CORRESPONDENCE

where B, C and D are:

B =







cosψ sinψ 0

− sinψ cosψ 0

0 0 1







C =







1 0 0

0 cos θ sin θ

0 − sin θ cos θ







D =







cosφ sinφ 0

− sinφ cosφ 0

0 0 1







where φ and θ are found from the tangent vector and ψ = −φ so that the unit

vectors are consistent with the main figure axes. Therefore, a set of vectors (ri) on

a plane with equidistant angles can be translated to the centreline points (pi) and

rotated so as to be orthogonal to the centreline. Figure 4.3 illustrates the tranlation

and rotation of the 4 vector set ri to pi.

Figure 4.3: Mapping points to the airway surface by ray/triangle intersection of orthogonal
vectors. Each set of vectors is translated to pi and euler angles are used to align the central
vector with the centreline tangent. The intersection between the vectors and the airway
surface is then found.
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The intersection of the vectors (rij) with the triangular surface mesh was found

using Möller and Trumbore’s (2005) ray/triangle intersection method. This method

determines if the vector falls inside each face when intersecting a plane (with the plane

normal defined by the face). Each face must be checked individually. To improve the

speed of the search, only faces that fall within a sphere of intersection are analysed.

The sphere is chosen as follows:

• The sphere of intersection is defined by two constants: sphere centre (α) and

radius (β).

• The radius is chosen to be greater than the radii of all branches

• The centre is chosen along the vector of interest (α = pi + βrij).

• Therefore:

– the point of intersection is guaranteed to fall in the sphere.

– number of faces to be searched will be reduced

An example of a sphereical search region is shown for one of the vectors in Figure

4.4c and Figure 4.5c.

This representation allows a set of corresponding surface points to be mapped

onto each branch of each segmented airway. Figure 4.4 and Figure 4.5 show the

mapping of surface points onto two example airway segmentations; mapping for the

Trachea-RMB-LMB and RMB-RUL-BI regions are shown. Figure 4.4a and Figure

4.4c show the points in relation to the complete airway tree while Figure 4.4b and

Figure 4.4d only show a enlarged version with only the branches of interest.

The benefit of this representation is that it is based on the most consistent features

of the airway tree, which are the bifurcation points and centreline; there are no useful

surface features that can be used to establish correspondence.

Statistical analysis methods could be applied directly to these corresponding land-

mark points. This would simplify the method because registration of an airway surface

mesh template is not required. Statistical analysis applied directly to the landmark

points is demonstrated in Chapter 5. However, using the vertices of a template mesh

allows a more detailed representation of the airways. By only representing an airway
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(a) Airway segmentation with landmark points for
the Trachea-RMB-LMB region

(b) Enlarged region showing the point map-
ping to individual branches

(c) Airway segmentation with landmark points for
the RMB-RUL-BI region (with a single sphere show-
ing the area of search for an example vector)

(d) Enlarged region showing the point map-
ping to individual branches

Figure 4.4: Example case 1, mapping corresponding points onto the surface mesh of an
airway. Red points represent the surface landmark points obtained from the intersection of
the vectors (blue) with the airway surface. Red vectors are tangents to the centreline.
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(a) Airway segmentation with landmark points for
the Trachea-RMB-LMB region

(b) Enlarged region showing the point map-
ping to individual branches

(c) Airway segmentation with landmark points for the
RMB-RUL-BI region (with a single sphere showing
the area of search for an example vector)

(d) Enlarged region showing the point map-
ping to individual branches

Figure 4.5: Example case 2, mapping corresponding points onto the surface mesh of an
airway
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with landmark points projected from the centreline, concave regions will be repre-

sented by a large number of landmarks and convex regions will be represented by

fewer landmarks; this is not ideal. In addition, if a large number of landmarks are

chosen there is also a risk that the orthogonal radii will overlap causing folding in the

surface representation. Using a small number of landmarks to align a template mesh

overcomes these challenges.

The pseudo-landmark points were used to align a template mesh to each airway

in the dataset.

4.2.2 Thin-plate-spline alignment

Thin-plate splines (TPS) is a method of interpolation that minimises the bending en-

ergy of the surface (Bookstein, 1989, 1997). This method is also useful as a method

of non-rigid registration; a surface with one set of landmarks is warped to a corre-

sponding set of landmarks in a physically realistic way.

TPS in 3D is defined by the minimisation of the bending energy E.

E =

∫ ∫ ∫

R3

(

∂2f

∂x2

)2

+

(

∂2f

∂y2

)2

+

(

∂2f

∂z2

)2

+ (4.4)

2

(

∂2f

∂x∂y

)2

+ 2

(

∂2f

∂y∂z

)2

+ 2

(

∂2f

∂x∂z

)2

dxdydz

The function inside the integral defines the the bending energy due to a small

deformation at a point. The energy is integrated over the entire space and min-

imised. The thin-plate spline function in 3D that transforms a point p = (x, y, z) by

minimising the 3D version of Equation 4.4 is:

f(p) =
k
∑

i=1

wiU(|p−Pi|) + a0 + axx+ ayy + azz (4.5)

where f(p) = [fx(p), fy(p), fz(p)] is the new position of the point (p). Pi are the

k landmark points on the shape and wij are the weighting factors. U(r) = r2log(r2)

for the 2D case and U(r) = |r| for the 3D case, where r = p−Pi.
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The weighting factors wij are found by solving Equation 4.5 but replacing p with

each landmark point Pi in turn and replacing f with the transformed landmark P̃i.

This problem can be rewritten as:

W = L−1H (4.6)

where

L =

(

K Q

QT O

)

H = [P̃1 P̃2 ...P̃k 0 0 0 0]
t

K =













0 U12 . . . U1k

U21 0 . . . U2k

...
... . . .

...

Uk1 Uk2 . . . 0













Q =













1 x1 y1 z1

1 x2 y2 z2
...

...
...

...

1 xk yk zk













where O is a 4×4 matrix of zeros. Once the vector of weighting factorsW is obtained,

the warp of any point can be obtained using Equation 4.5.

One airway from the dataset was selected as a template and a TPS warp was

applied to align the template with each airway in order to represent each airway in

the dataset with a corresponding mesh. Figure 4.6a and Figure 4.7a show templates

that are warped by TPS to two regions of the airway.

4.2.3 Local mesh alignment

The TPS warp will only be exactly aligned at the landmarks and further matching

is required so that the template mesh is exactly aligned with each target mesh (as

shown in Figure 4.6 and Figure 4.7). The simplest method is to project the template

mesh to the closest point on the target mesh (Hutton et al., 2003; Paulsen et al.,

2002) but this can lead to unrealistic deformation and movement to the closest point

while not representing small deformations. Figure 4.8a shows mesh misalignment, by

projecting to the closest point, because of narrow sections caused by stenosis. Figure
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(a) Thin-plate spline warp by aligning landmark
points (red) of a template mesh to the landmark
points of a region of an airway

(b) Local alignment (performed after TPS warp)
of each template vertex to the airway surface

Figure 4.6: Registration of a template mesh to an airway mesh for the RMB-RUL-BI region
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(a) Thin-plate spline warp by aligning landmark
points (red) of a template mesh to the landmark
points of a region of an airway

(b) Local alignment (performed after TPS warp)
of each template vertex to the airway surface

Figure 4.7: Registration of a template mesh to an airway mesh for the Trachea-RMB-LMB
region
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4.8b shows the improvement with the proposed method.

Meller and Kalender (2004) and Kaus et al. (2003) optimize the fit based on the

distance between the meshes while an additional force preserves the mesh structure.

Our method is based on these methods but is enhanced for deformed tubular objects

by adding a third term based on the surface orientation. For each vertex (ti) on

the template mesh, a force (Fi,tot) is calculated to direct the warp. This consists of

a component based on closest point on the object mesh (ri) (Equation 4.7) and an

internal forcing component is included to preserve the size of the faces. The force

is calculated by the change in the distance of each of the m neighbouring vertices

to a vertex ti from the initial distance v0j (Equation 4.8). These two forces are not

enough to match to small indentations or protrusions found in the airways. Therefore,

a local inflation/deflation force is also applied based on the normal of each vertex

n̂i (calculated from the normal of the surrounding faces). The amount of inflation

and deflation is controlled by the distance and direction of the target mesh to Fi,1

(Equation 4.9).

Fi,1 = ~ri − ~ti nearest point ext. force (4.7)

Fi,2 =

p
∑

j

v̂j(||~vj|| − || ~v0j||) where ~vj = ~tj − ~ti internal force (4.8)

Fi,3 = n̂i(n̂i · Fi,1) normal ext. force (4.9)

Fi,tot = αFi,1 + βFi,2 + γFi,3 (4.10)

In Equation 4.10, the forces are weighted with α, β and γ. This procedure is

applied iteratively until stability is reached. Figure 4.8 shows the effectiveness of this

method for narrowed and stenosed tubular regions. In Figure 4.8a, the closest point

method fails in stenosed regions. In Figure 4.8b the proposed method overcomes

these issues. The mesh after this local alignment is also shown in Figures 4.6b and

4.7b.

This method enables any segmented airway to be registered to a template mesh,

and, thus, achieving vertex correspondence.
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(a) Mesh registration using only the closest
point method

(b) Mesh registration using F1, F2 and F3

alignment procedure

Figure 4.8: Comparision between the mesh representation of a single airway and the reg-
istered template mesh. The closest point method shows greater error when branches are
narrowed from stenosis

4.2.4 Local shape models

The previous sections have introduced a method to register the surface mesh of seg-

mented airway trees. This method can be applied to the whole airway tree or to a

region of the airway. The Figures 4.4, 4.5, 4.6 and 4.7 illustrate regional based airway

analysis. This section discusses a method to accurately extract a region of interest

to aid analysis.

In Chapter 3, each mesh face (m ∈ M) was assigned a branch label by assigning

the label of the closest voxel of the labelled skeleton (sc):

sc := argmin
s∈S

||m− s|| (4.11)

l(m) := l(sc) (4.12)

where M is the set of all mesh face centroid coordinates, S is the set of all voxels in

the skeleton and each voxel has a branch label (l(s) ∈ L). The mesh representing

each branch is then defined as Bj := {m|l(m) = lBj
} where lBj

is the label of a given

branch Bj

However, this labelling criterion introduces a number of issues when finding corre-

spondence. Mesh faces in a bifurcation region are assigned to the connected branches
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but this assignment is biased towards branches with a smaller diameter and is influ-

enced by branch shape and orientation. This leads to irregular and noisy branch end

points which impacts the shape analysis.

In order to improve the stability of the branch labelling, adjustments are made to

this assignment. Using a neighbourhood (neigh(Bj) := {m|m ∈ Bj ∨m ∈ child(Bj)∨
m ∈ parent(Bj)∨m ∈ sibling(Bj)}), defined as the meshes of all connected branches

to the current branch, a subset of neigh(Bj) are relabelled as the current branch

(lBj
):

B̂j := {m|m ∈ neigh(Bj) ∧ n̂j1 · n̂m1 > α ∧ n̂j2 · n̂m2 > α

∧ |m− ej1|+ |m− ej2| < β|ej1 − ej2|} (4.13)

where ej1 and ej2 are the start and end points of the branch. nm1, nm2 are the

directions from ej and end points to the centroid of face m (see Figure 4.9). α

and β are constants identified from the training set. The first line of Equation 4.13

allows faces from neighbouring branches to be included, the second line limits the

branch between the start and end point and the third line restricts the distance from

the branch that voxels can be included (to avoid potential inclusion of disconnected

regions from other branches). Each face (m) can have more than one label and m

that are not assigned to a branch are labelled as bifurcation points. This method

reduces the variance due to region selection by creating smooth and consistent edges

between labels.

4.3 Evaluation

To evaluate the accuracy of the template registration, the registered template mesh

was compared to the original meshes for each airway. The quality of the registered

mesh was also assessed.

4.3.1 Mesh registration

Parameters of the mesh warping procedure were chosen to obtain an accurate warp

of the template. The weighting factors (α, β and γ) of the optimisation forces were
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Figure 4.9: Relabelling the surface mesh where m is the face to be relabelled. m is labelled
according to the face’s position in relation to the branch end points ej1 and ej2

varied using a grid search. The results were compared by generating a volume from

each original mesh and template mesh, and calculating the difference:

Vdif = (Vtemp \ Vcase) ∪ (Vcase \ Vtemp) (4.14)

where \ is the relative complement and ∪ is the union of the sets. By combining

results for the entire dataset, the most suitable parameters could be chosen. The

volumes Vtemp and Vcase were generated by re-voxelisation of the airway meshes; voxels

inside the mesh were assigned to the volume1. Figure 4.10 shows a section of the

airway mesh and the generated volume.

A proportion of this error is due to small differences between the mesh and tem-

plate mesh. This is because the template mesh is reduced in size and is made up of

larger faces. This will not have a large effect on the model and we are more interested

in avoiding large local errors. Some of the error is also due to the discrete voxel rep-

resentation of the volume during the evaluation. Therefore, a morphological opening

1The voxel density was chosen to be 5 times the original voxel density in each dimension, resulting
in the volume containing 125 times as many voxels as the original segmentation. Voxel density was
increased to better simulate the smoothed airway mesh
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(a) Airway surface mesh (b) Voxel representation of surface mesh

Figure 4.10: Generating a volume from an airway surface mesh. The volume is represented
by voxels that each have a volume 1/125 of the original voxels in the airway segmentation

was applied in order to obtain a second metric:

Vopen = Vdif ◦K (4.15)

where K is a 6-connected kernel. This metric only includes errors that have a

thickness greater than 2/5 of a voxel (2 resampled voxels). As the resolution of the

airway is defined by the airway segmentation voxel size, removing errors less than

half a voxel, was considered a more useful metric.

4.3.2 Mesh quality

Changes in mesh quality after registration are also considered in the evaluation. Two

useful measures of mesh quality are: the ratio of sides of each triangle in the mesh

and the ratio of the radii of the incircle and circumcircle (Pebay and Baker, 1991,

2003).

The radii of the incircle(r) and circumcircle (R) can be calculated from the sides

of a triangle (a, b and c), as shown in Figure 4.11.
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Figure 4.11: A triangle (sides a, b and c) with incircle (radius r) and circumcircle (radius
R)

The incircle radius (r):

r =
A

s
(4.16)

(4.17)

and the circumcircle radius (R):

R =
abc

4A
(4.18)

where A is the area of the triangle given by Heron’s formula and s is the semi-

perimeter.

A =
√

s(s− a)(s− b)(s− c) (4.19)

s = 0.5(a+ b+ c) (4.20)

These values were used to calculate quality metrics for each triangular face where:

q1 =
min(a, b, c)

max(a, b, c)
(4.21)
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is the ratio of the smallest and largest sides and

q2 =
2r

R
(4.22)

is the ratio of the radii (Pebay and Baker, 1991, 2003). Both q1 and q2 are equal to

1 for equilateral triangles.

Degenerate triangles are triangles with a volume of 0 and creation of these should

be avoided when registering a mesh. q1 and q2 are useful measures as they provide

tools for measuring the two types of nearly degenerate triangles: needle and flattened

triangles. Pebay and Baker (2003) define a needle triangle as a triangle where one

and only one angle is almost 0. A flat triangle is where one angle is almost π. q1 → 0

as the triangle becomes a needle and q1 ≈ 2 as the triangle flattens. q2 is a measure of

volume and, therefore q2 → 0 as the triangle flattens or becomes a needle2. Therefore,

these non-dimensional measures are 1 for equilateral triangles and tend to 0 for types

of degenerate triangles, and provide tools for assessing the change in quality of an

unstructured mesh during registration. The distribution of q1 and q2 was found for

each mesh before and after registration and mean values were found for the entire

dataset.

4.4 Results

This section presents results of the mesh registration by evaluating the accuracy of

the registration and the quality of the mesh representation using the 89 case training

set.

4.4.1 Algorithm parameters

As discussed earlier, the centreline (originally represented by voxels) was interpolated

and smoothed. Linear interpolation between the voxel coordinates was performed and

100 points were sampled between each voxel. This was chosen to be suitably dense,

from which, to derive resampled equally spaced landmark points. The centreline was

2In this thesis, an inverse of the metrics used by Pebay and Baker (2003) is used so that the
measures lie between 0 and 1, instead of 1 and ∞
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then smoothed using a moving average (as shown in Figure 4.12). The number of

points used in the smoothing was qualitatively assessed using example cases from the

training set. Five voxels were used to calculate the moving average at each point as

this removed the appearance of individual voxel noise. Therefore, 500 points were

used to calculate the smoothed centreline from the interpolated points.

Figure 4.12: Section of the airway centreline showing the voxel coordinates (squares) and
the smoothed and interpolated centreline (derived from the voxels)

A single case with no visible pathology (from the training set) was used as the

template for registration. Choosing a different template had very little effect on the

accuracy of the registration. A mean template generated from the training set could

be used instead. However, as each airway segmentation is represented by meshes of

varying sizes (dependent on the number of voxels representing each airway), gener-

ating a mean model would require a second registration procedure. The number of

faces in the template was reduced to 20% of the initial mesh using Matlab’s built-in

reducepatch function. Therefore, the Trachea-RMB-LMB region was represented by

3286 faces and 1733 vertices, and the RMB-RUL-BI regions were represented by 1093

faces and 618 vertices. The number of vertices was decreased to reduce computational

time.

The number of resampled points used, for radius based measurements, was [100

100 50] (number of points in each branch of a 3-branch section). At each of these
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equidistant points, 4 points were projected to the surface to generate pseudo-landmark

points. For registering the template mesh, many fewer points were used:

• Trachea-LMB-RMB [5, 5, 2] resampled points on each bronchi

• RMB-RUL-BI of [3, 3, 3] resampled points on each bronchi

These values were chosen so that the landmarks were suitably far apart that the

orthogonal radii never intersected – which would cause folding in the surface repre-

sentation.

4.4.2 Parameters and accuracy of mesh alignment

The accuracy of the mesh alignment was evaluated by comparing volumes generated

from the template mesh and airway region of interest. Figure 4.13 shows contour

plots of the proportion of error in the registration (Vdif ) and a 1-voxel opening of the

error (Vopen) as a function of α and γ with β = 1.0 (Equation 4.10). For stability, only

α < 1.0 and γ < 1.0 were considered when choosing optimal values. Optimal values

were found to be α = 0.1 and γ = 0.8 with a mean Vdif = 0.021± 0.009 and Vopen =

0.0022±0.0049. The error for each airway registration, which is used to calculate the

mean values, is shown in Table C.7 (Appendix C). Just using closest point mapping

(Equation 4.7): Vdif = 0.029 ± 0.019 and Vopen = 0.009 ± 0.015. Using closest point

mapping and the mesh structure term (Equations 4.7 and 4.8): Vdif = 0.027± 0.018

and Vopen = 0.006±0.011. Therefore, including the inflation/deflation term improves

the registration of the template and reduces the variance in the accuracy of the fit.

This is particularly noticeable for Vopen (larger local errors) and agrees with qualitative

observations that adding the third term improves the registration for narrowed and

stenosed branches. Results for all optimisations are available in Appendix C. This

optimisation could be performed on an individual basis to choose parameters for each

case. However, in this work the same fit parameters are used throughout the dataset.

Mesh quality was also considered before and after registration using the parame-

ters (α, β and γ) chosen from the optimisation procedure. Figure 4.14 and Figure 4.15

show histogram plots of the mesh quality measures, q1 and q2, respectively. These

plots show a) the mean of the template before local alignment (after TPS warp)

b) local alignment using closest point method c) local alignment using closest point
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Figure 4.13: Contour plots showing the proportion of error when comparing the accuracy
of the registered template mesh to the original mesh. The error is shown as a function of
the weighting parameters α and γ of F1 and F3, respectively (β = 1).

method with mesh structure preservation and d) the proposed method. The plots

are calculated for each airway and from this the mean histogram is calculated (an

example distribution for a single case is shown in Figure C.1 of Appendix C). Each

mesh face in an airway tree varies in shape due to the mesh extraction and reduction

procedures.

For consistency across airways, it is beneficial that a method that preserves the

mesh shape as much as possible while optimising the fit. Particularly, the creation of

nearly degenerate triangles (low q1 and q2) should be minimised. Figure 4.11 shows

that while the distribution of the faces remain very similar, using the proposed method

(αF1 + βF2 + γF3) reduces the number of triangles with low q1 and q2 compared to

using just closest point (F1) or closest point with mesh shape preservation (αF1+βF2).

Just using closest point introduces a large number of poor triangles. The differences

are small but the figures show that using all three terms reduces that number of poor

triangles.

Figures 4.16 and 4.17 show the registration of the template mesh to the entire test

set. These cases contain TB and non-TB paediatric patients and are used in Chapter
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6 for airway shape evaluation.

4.5 Discussion and Conclusions

In this chapter, a method to automatically create correspondence between airway

surface meshes is introduced to allow modelling of airway shape variation. Initially,

corresponding points are placed on the airway surface based on the airway branch-

ing structure and centreline. This is related to previous cross-sectional landmarking

methods (de Bruijne et al., 2003a; Deligianni et al., 2006), however, the method ex-

tends and automates the previously semi-automatic methods by using the branching

structure and 3D volume to identify the landmarks instead of axial cross sections.

These landmark points are then used to guide the registration of a template mesh us-

ing TPS and local vertex alignment. Local vertex alignment is applied and modified in

a novel way, for tubular objects with stenosis, by including a local inflation/deflation

term to the optimisation, which improves results. This method is used to develop

correspondence from airway segmentations where every vertex in each airway mesh

corresponds to an equivalent vertex on every other mesh. The author is not aware of

any previous methods to register airway surface meshes from multiple patients. Fi-

nally, a novel method to consistently extract local regions of the airway is introduced.

The optimal method was able to register a simplified template mesh to the airway

dataset with a mean error of 2.1 ± 0.9%. However, single voxel errors are likely to

be caused by the re-voxelisation method used in the evaluation. Errors larger than

1 voxel (i.e. errors that could not be explained by the re-voxelisation procedure of

the mesh faces) contributed to 0.22 ± 0.49 %. The local normalisation performed

better than previous methods for the airway, both in terms of registration accuracy

and mesh quality.

This airway correspondence method can be used to build statistical shape models

of the airways.
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(a) Template mesh after thin-plate-spline warp

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

q
1
=t

min
/t

max

c
o
u
n
t

(b) Fi,tot = αFi,1
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(c) Fi,tot = αFi,1 + βFi,2
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(d) Fi,tot = αFi,1 + βFi,2 + γFi,3

Figure 4.14: Mean histogram plots of the mesh quality measure q1 (ratio of shortest and
longest edge of each face) for the entire training set. a) shows the mean template before
vertex alignment b) shows the mean template using the closest point method c) shows the
mean template using the closest point with mesh preservation term d) shows the proposed
method
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Figure 4.15: Mean histogram plots of the mesh quality measure q2 (ratio of face incircle and
circumcircle radii) for the entire training set. a) shows the mean template before vertex
alignment b) shows the mean template using the closest point method c) shows the mean
template using the closest point with mesh preservation term d) shows the proposed method
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Figure 4.16: Registration of the template mesh to the trachea-RMB-LMB section for the
entire test set. The first 36 cases are patients diagnosed with TB and the remainder are
controls. Obstructed regions are automatically excluded (discussed in Chapter 6).
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Figure 4.17: Registration to the template mesh to the RMB-RUL-BI section for the entire
test set. The first 31 cases are patients diagnosed with TB and the remainder are controls.
Obstructed regions are automatically excluded (discussed in Chapter 6).
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4.6 Chapter summary

This chapter presents a method to develop vertex-to-vertex airway correspon-

dence:

• Airway correspondence method consists of:

– Centreline smoothing and resampling

– Projection of orthogonal vectors from centreline

– Intersection of vectors with the mesh using ray/triangle intersection

– Alignment of the template mesh using the pseudo-landmark points

– Local alignment of the template mesh to the airway using the terms:

∗ Closest point (F1)

∗ Mesh structure preservation (F2)

∗ Local expansion/contraction (F3)

• The method was evaluated using:

– Analysis of the accuracy of the warp

– Analysis of the mesh quality

• Results of the evaluation:

– General error: 2.1±0.9 % (influenced by revoxelisation procedure used

in the evaluation)

– Local error: 0.22± 0.49 %

• This method is used to build a point distribution model from the airway

dataset in later chapters
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5
Obstructed Branch Detection

Abstract. Most airway segmentation algorithms fail when there is severe pathology that

leads to the appearance of complete obstruction in a bronchi. In this chapter a method

is presented that can be added to existing airway segmentation algorithms to detect

and segment beyond obstructions. The method builds a point distribution model of

each bronchi, and support vector machines are used to classify regions that have missing

branches. A region beyond the obstruction is then searched to detect additional airway

regions. This method was evaluated on a dataset containing obstructions in the major

bronchi and automatically identified 24 of the 26 obstructed branches; two branches could

not be classified because of a lack of data. 18 of 19 disconnected airway regions were

segmented.

As mentioned in previous chapters, a number of cases have severe airway com-

pression so that the air filled airway region, usually visible in the CT examination, is

discontinuous. This is problematic for airway segmentation algorithms as most rely

on the airway being a connected structure.

In this chapter a method is proposed that takes into account the airway tree

topology and branch shape, to identify and segment missing branches. This is added
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to a previously tested segmentation algorithm described in Chapter 2. The goal is

not only to improve the segmentation but also to link the missing branches to the

structure of the airway tree – to allow further airway evaluation. In this chapter, the

method is used in conjunction with a specific airway segmentation algorithm but has

the potential to be applied to most existing algorithms.

The algorithm is evaluated on a paediatric chest CT dataset containing cases

of airway compression caused by TB. The algorithm, including detection of missing

branches, identification of the point of obstruction and segmentation beyond the

obstruction is outlined in Section 5.2. Results from the evaluation of the method on

a TB dataset are then presented in Section 5.3.

5.1 Background

As described in Chapter 2, there are a number of existing airway segmentation meth-

ods (Aykac et al., 2003; Fetita et al., 2004; Irving et al., 2009; Sonka et al., 1999;

Tschirren et al., 2002; van Ginneken et al., 2008). However, these generally focus on

adult airways and do not consider obstructions. In order to minimise the likelihood

of segmentation of non-airway regions these methods generally require the airway to

be completely connected. This is often performed using a region growing step from a

seed point in the trachea. If a method is to be effective for the analysis of pathological

airway trees then the method must be robust enough to segment branches beyond

complete obstructions.

A few methods do not require the airways to be a connected structure and in-

stead rely on the filtering step to minimise leaking. Sonka et al. (1999) propose a

rule-based method that uses airway grey-scale, size and vessel adjacency to classify

airways. They produce two representations: a 3D connected region and a representa-

tion that includes disconnected regions that are also classified as airways. Kitasaka

et al. (2010) use filters to enhance tubular structures in the image. Fetita et al. (2004)

use a morphological approach that can also be used to identify disconnected airway

regions. However the method a requires compromise in the choice of morphological

parameters that results in including nonbronchial structures of a similar shape with

the disconnected regions. All these methods have the potential to segment discon-

nected airway structures but also result in considerably increased leaking because
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non-airway disconnected structures are also included (Kitasaka et al., 2010; Sonka

et al., 1999). Kitasaka et al. (2010) mentions that structures of a similar intensity

and shape such as the oesophagus are included, and suggest statistical shape analysis

as a possible approach to remove these objects.

Lo et al. (2009b) introduce a method that uses locally optimal paths to segment

the airways. This method uses a trained appearance model based on local voxel

intensities to determine a cost function. The cost function is then used with Dijkstra’s

algorithm to determine the optimal paths for airway segmentation. This method was

shown to be effective for segmenting additional peripheral branches that have local

occlusions, with only a small increase in false positives. However, this method relies on

local greyscale values and is, therefore, unlikely to be effective for large obstructions

in the larger bronchi. Obstructions of the larger bronchi are uncommon in most

diseases affecting the airway but occur in a number of paediatric cases, including

cases with TB. In these cases there may be the appearance of no bifurcation (see

missing branches in Section 5.2.1) or more than half a bronchi missing, and the shape

of the airway is expected to be a more useful indicator of missing branches than local

greyscale values. Using the expected appearance of each bronchi (trained from a shape

model) missing branches can be detected where there may be no other signs. Including

expected airway shape in analysis has the potential to increase the robustness of

segmentation algorithms, allow analysis of the airways beyond obstructions, and have

a number of additional applications beyond airway analysis. There may also be

potential to include texture analysis, with shape analysis, to identify the cause of the

obstruction and further improve the detection of obstructions.

5.2 Method

This method builds on the airway segmentation, centreline identification and branch

labelling algorithms of Chapters 2 and 3. Corresponding landmark points were then

identified using the centreline and branch points as a reference (Chapter 4). Each

branch is sampled 30 times along the centreline and 8 landmarks are generated on the

airway surface for each sampled landmark point. In this Chapter a point distribution

model was developed directly from the landmark points instead of from the vertices

of a registered template mesh (as used in Chapter 6). This simplifies the algorithm

136



CHAPTER 5. OBSTRUCTED BRANCH DETECTION

for shape variation involving missing branches but means that the representation is

less detailed than later models.

Point distribution models consist of a set of points that represent each object in

the dataset, where a point on one object has a corresponding point on each other

object in the dataset (Cootes et al., 1995). The previous steps find a suitable point

representation so that shape analysis can be performed to find obstructed branches.

Three steps are used to detect new branches:

• Identify the existence of an obstruction

• Find the position of the obstruction

• Find airway beyond the obstruction

Obstructions can be separated into two categories: obstructions that occur late

enough in the branch for the obstructed branch to be distinguished from the parent

branch (which we will define as incomplete branches), and obstructions that occur

close enough to the beginning of the branch for there to be no identifiable new branch

on the main airway tree (missing branches) as shown in Figure 5.1. The separation

between these categories depends on the sensitivity of the skeletonisation procedure

to detect new branches. However, the more sensitive the skeletonisation procedure is

to branching, the greater the chance that false branching will occur. Two separate

methods are used to identify these categories of obstruction.

Figure 5.1: Missing and incomplete categories of obstructions. Branches are defined as
incomplete if a centreline has been detected and missing if a centreline has not been detected
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Figure 5.2 shows an outline of the obstructed branch detection algorithm. Statis-

tical analysis is applied to each branch to identify missing branches, from the shape

of the included region. Branch diameter is then used to detect the point of obstruc-

tion. If no missing branches are detected then connectivity of the skeleton is used

to identify any incomplete branches. The CT volume beyond the obstruction is then

searched for additional airway regions.

Initial point of 
missing branch

Parent branch

Statistical 
shape analysis

Missing child 
branch?

Incomplete 
child branch?

Branch beyond 
obstruction

Complete

No

Yes

No Yes

Figure 5.2: Diagram showing the procedure to identify missing child branches

5.2.1 Identification of obstruction

Incomplete branches are easier to detect thanmissing branches. An incomplete branch

is identified as a branch with no child branches. Therefore, the branching structure

of the segmentation is used to identify these obstructed branches. The point of

138



CHAPTER 5. OBSTRUCTED BRANCH DETECTION

obstruction is defined as the last point of the centreline of the branch.

Identification of obstruction is more complicated for missing branches because the

branch point can not identified from the centreline and, therefore, two branches are

detected as one (see Figure 5.1). In our algorithm, statistical shape analysis is used

to distinguish normal branches from branch regions containing a missing branch.

Principal component analysis (PCA) is applied to the branch landmark points in

the dataset and the first four modes are used as a feature vector for classification.

Branches in the dataset are manually labelled and used to train a support machine

classifier (SVM). This trained classifier is used to identify obstructed branches1. This

results in branches that contain a missing branch being identified for further analysis.

5.2.2 Position of obstruction

Once branches have been identified as containing missing child branches from the

classifier, an analysis of the radius of the branch is performed to detect the position

of the obstruction. Four diameters, at each branch cross section, are calculated from

the 8 landmark points, and the diameter profile of the branch (in these 4 directions)

is used to identify the point of obstruction. Local maxima of the diameter profile

were used to identify the position of the missing branch.

Figure 5.3 shows two patient profiles with BI obstruction. In both cases the BI is

missing and the RMB is incorrectly identified as the initial RMB region shown in the

figure. After statistical analysis this region is found to be incorrect. The 4 branch

diameter profiles are then calculated for the region. By identifying the local maxima,

the start point of the missing BI branch is found.

The branch is initially wide, therefore, only local maxima beyond the first third of

the branch were used. The optimal direction for analysis was chosen for each region.

5.2.3 Segmentation of disconnected airway regions

Once the obstructed branches have been identified and the point of obstruction found

then the next step is to identify the airway beyond the obstruction (disconnected

1Each anatomical branch is trained and classified separately e.g. normal and missing LMB
branches are used to train the classifier to detect unseen LMB branches
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Figure 5.3: Airway shape and branch diameter profiles for obstructed branches for two
patients. The top figures show a silhouette of the two patient airways and the bottom figures
show branch radius for the RMB bronchus as a function of position along the centreline.
The airways are normalised for size (more details in Equation A.2 of Appendix A.1) before
branch diameter measurements so the diameters are relative measurements.
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airway region). It is expected that if the direction branch is followed past the ob-

struction, then the remainder of the branch can be found. A cylinder is chosen as

a simple way of defining a region where the branch may continue after obstruction.

This cylinder is defined by the point of obstruction and the direction of the branch,

and used to guide the branch search. Segmented objects that intersect the cylinder

are identified and labelled. In most cases only one object is found, however, if more

than one exists, a set of heuristics based on size and compactness are used to identify

the correct object. The size of the cylinder and the direction of the search was chosen

using the cases in the dataset. Cylinder dimensions were chosen as:

• radius = 20 voxels

• length = 27 voxels

The radius and length were chosen to be large enough to include all the disconnected

regions in the obstructed dataset. Given more data these parameters should be

evaluated on an independent test set.

The direction of the search was chosen as the approximate direction of each branch

(the coordinate system is shown in Figure 5.3):

• LMB obstruction v=[0, 1√
2
, 1√

2
]

• BI obstruction v=[0,0,1]

• RUL obstruction v=[0,-1,0]

These parameters, which are used to search for obstructed branches, are a simple

representation of branch directions.

5.3 Results and discussion

5.3.1 Dataset

The dataset consists of 49 chest CT scans from Tygerberg Hospital, Western Cape,

South Africa. These are paediatric patients diagnosed with definite or probable TB

from positive culture or scope and CT findings. The median age of a patient in
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the dataset is 14 months and the maximum and minimum age is 108 months and 2

months, respectively. The scans were acquired on a number of units with voxel size

varying from 0.3-0.4 mm in the XY plane and 0.7 -1.0 mm in the Z direction. This

dataset contains various degrees of stenosis including complete obstructions. The

age of the patients concerned meant that the airways are much smaller than adult

airways, and therefore, with fewer branches segmented. Seven cases were removed

from the dataset: 3 because of severe movement artefacts, 2 because of scan errors

and 2 because a tube in the trachea affected the trachea shape. The algorithm was

tested on the remaining 42 cases. Obstructions and disconnected airway regions

were manually labelled from the thresholded airway regions of the segmentation –

before region growing. These were also verified using the greyscale CT scans. These

manually labelled images were used for training the SVM and for comparison. This

method does not use the same data as the remainder of this research because a set

of cases with obstruction were specifically selected by pulmonologists at Tygerberg

Hospital for this research on obstruction.

The method was evaluated on the trachea, right main bronchus (RMB), left main

bronchus (LMB), right upper lobe bronchus (RUL) and bronchus intermedius (BI).

2 cases had a missing LMB, 3 cases had a missing RUL and 9 cases had a missing

BI. 1 case had an incomplete LMB, 1 case had an incomplete RMB, 3 cases had an

incomplete BI and 7 cases had an incomplete RUL.

5.3.2 Detection of missing and incomplete branches

Shape analysis was performed on each branch to find missing child branches. Shape

analysis was applied to the RMB to detect missing RUL and BI, and to the trachea

to detect missing LMB and RMB. The first 4 PCA modes were used as a feature

vector and a SVM with a polynomial kernel was used as a classifier. The SVM was

implemented with PrTools (van der Heijden et al., 2004) and more detail on the

SVM algorithm can be found in Appendix A.3. A SVM with polynomial degree 2

and C = 70 was used in this study. The first 4 modes accounted for 65% of the RMB

variation in the dataset. Figure 5.4 shows the landmark representation of the RMB

and the shape variation along first PCA mode.

Figure 5.6 shows the landmark representation of the airway and the identification
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of the obstruction start point. Figure 5.5 is a plot of the dataset in feature space for

the RMB and trachea. The plot uses multidimensional scaling (MDS) to present the

4 dimensions as a 2D plot. MDS is used to project data from a higher dimension to a

lower dimension while attempting to preserve the pairwise distances between points

(Bishop, 2006; Cox and Cox, 2001). This is only used in the figure to aid visualisation

of the separability between classes and not used as part of the classification algorithm.

The 3 classes for the RMB could be separated well using the 4 PCA modes where

the classes represented: 1) RMB, 2) RMB with RUL “stump” or 3) RMB with BI

“stump”. Using SVM with leave-one-out testing, all the RMB were classified correctly

as shown in Table 5.1. This method was also applied to the trachea to identify missing

LMB (as shown in Figure 5.5). The results look promising, however, with only two

obstructed LMB cases and no obstructed RMB cases, a classifier could not be trained.

In future work, simulated data could be used to overcome the lack of a large

enough dataset of clinical data. Simulated data could be created by adding obstruc-

tions to the mesh representations of existing airway segmentations. This would allow

enough obstruction examples to be created for a complete analysis system of the ma-

jor bronchi. However, the obstructions would need to be created in a way that is

representative of the obstructions found in real cases.

(a) -ve (b) Mean RMB (c) + ve

Figure 5.4: Variation along the first PCA mode of RMB

After missing child branches are identified, the algorithm checks the child branches

of the remaining airways for further branching. If not then the child branches are

incomplete (see Figure 5.2). All cases where the branches had not been labelled as

143



CHAPTER 5. OBSTRUCTED BRANCH DETECTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(a) RMB region: no missing branches
(blue +), missing BI (pink ×) and miss-
ing RUL (red ∗)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.05

0.1

0.15

0.2

0.25

0.3

(b) Trachea region: no missing branches
(blue +) and missing LMB (red ∗)

Figure 5.5: MDS reduction to 2 dimensions of 4 dimensional feature space.

True Labels Estimated Labels
1 2 3 Totals

1 28 0 0 28
2 0 3 0 3
3 0 0 9 9

Totals 28 3 9 40

Table 5.1: Leave-one-out cross validation of SVM for the RMB. The class labels are as
follows: no missing branches (class 1), missing RUL (class 2) and missing BI (class 3)

missing (by the classifier in the previous step) were checked and obstructions were

detected for all cases (see Table 5.2).

5.3.3 Segmentation of disconnected airway regions

Table 5.2 shows the total number of cases with obstructions (missing branches and

incomplete branches) and the total number of cases with disconnected airway regions.

In some cases for RUL there are no disconnected branches after obstruction (see Table

5.2). In these few cases the possibility of a small region containing bronchi could

not be excluded but were not identifiable during manual labelling. Two airways

with obstructed LMB are not listed as being identified for the LMB. The statistical

shape method is likely to work for these branches, however, there was not enough
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Figure 5.6: Point model with identified obstruction

data to train and test the model on this branch (see Figure 5.5). Assuming correct

classification of all three LMB then the second step extracted all three disconnected

airway regions correctly. Obstructions and disconnected branches for all 12 cases

of the BI branch were identified correctly. “False obstructions” were identified in 3

cases where the airway was continuous in the scan but was not segmented completely

because of severe stenosis. This algorithm was also able to identify these disconnected

regions that were missed by the original segmentation algorithm. Figure 5.7 shows

branch labelling of the original connected region and the addition of the disconnected

region. Figure 5.8 shows example segmentations of disconnected airway regions.

In summary, this method automatically identified 24 of the 26 obstructed branches.

Two branches could not be classified because of a lack of data. 18 of 19 disconnected

airway regions were segmented.

Airway segmentation beyond obstructed regions will improve the effectiveness of

segmentation procedures for severe pathology and will improve the viability of au-

tomated airway analysis. The authors are not aware of any other research that has

attempted to identify obstructions in the airway and segment beyond the obstruction.
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Manual labelling Automated detection
Branch Obstructed Disconnected False Obstructed Disconnected

branch region Obstructions branch region
LMB 3 3 0 1 a 3
RMB 1 1 0 1 (+1 error) b 1
BI 12 12 3 12 12

RUL 10 3 0 10 2

a2 excluded branches are likely to be detected by the SSM but classification could not be per-
formed for these 2 cases because of lack of training data

b1 branch was misclassified because of a lack of child branches

Table 5.2: Manually and automated labelling of obstructions and disconnected branches
(no. of airways)

(a) Branch labelling (b) Disconnected airway region

Figure 5.7: Branch labelling and identification of obstructed branch
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(a) BI obstruction (b) LMB obstruction

Figure 5.8: Segmenting past complete obstruction

A method has been presented that uses the airway topology and shape to identify

disconnected airway regions – and can be applied to existing segmentation methods.

This improves upon previous methods that did not take into account the relation-

ship between the main airway tree and the disconnected airway regions, and applies

statistical shape analysis for the first time to this problem. In addition, the topolog-

ical relationship between the main tree and disconnected airway region is also found,

which will aid further airway analysis. There is also potential to apply this method

to other anatomy with a branching tubular appearance including blood vessels.

This method shows a lot of promise for actively detecting and segmenting beyond

obstructed airways. However, both normal and missing branch examples are required

to train the algorithm for each anatomical branch. Obstructions are common enough

to be of importance for segmentation algorithms but it is challenging to acquire

enough training data to evaluate all branches of interest. As shown in this study, 2

cases of LMB stenosis were not enough to train the classifier and this chapter contains

an initial evaluation. In future, a dataset containing more examples of obstruction

would be useful for an extended training, optimisation of algorithm parameters and

evaluation2.

2The method described in this chapter uses algorithms developed in the previous chapters. How-
ever, this method was not incorporated into the computer assisted detection system described in
chapters 2, 3, 4 and 6, and is included in this thesis as an additional method for airway analysis.
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5.4 Conclusion

A method was developed in this chapter that uses point distribution models of the

bronchi, along with a classifier, to detect obstructions, and segment beyond the ob-

struction. This method has potential to extend and improve existing airway and

vessel segmentation algorithms. However, the method requires cases of obstruction

for each branch of interest, for training, and requires further evaluation using a larger

dataset of obstructed branches.

5.5 Chapter summary

• Application

– Segment beyond airway obstructions

• Algorithm

– Classification of branch shape from PCA modes

– Identify missing and incomplete branches

– Find point of obstruction

– Search beyond obstruction for new airway regions

• Future work

– Requires many more cases of obstruction to extend method to other

regions of the airway
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6
Automated detection of paediatric

tuberculosis from airway shape

Abstract. This chapter presents a method to identify abnormal airway shape variation,

and uses airway shape to detect cases of paediatric pulmonary TB. The method develops

statistical shape models of regions of the airway tree, and these models were evaluated

in terms of compactness, specificity and generalisation. Features derived from the shape

models were used for classification of airway pathology, along with alternative features

based on branch cross-sections and orientation. The features were used along with

a linear discriminant analysis classifier to detect cases with TB in the test set with

leave-one-out cross validation. The best performing features were derived from the shape

models of the airway surface and achieved an area-under-the-curve of 0.87(0.77 − 0.94)

and 0.81(0.68− 0.90) for the Trachea-LMB-RMB and RMB-RUL-BI regions, respectively.

CT and bronchoscopy are commonly used diagnostic procedures for paediatric

TB patients with suspected airway involvement. Bronchoscopy is considered the

“gold standard” for quantifying airway involvement but general anaesthesia is often

required and the external cause of the involvement can not be seen. Recent studies
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illustrate the possibility of using CT with volume rendering as an alternative to

bronchoscopy (du Plessis et al., 2009) – offering the benefits of bronchoscopy while

also allowing visualisation of the external cause of the airway involvement. There

is potential to assist in the detection of paediatric tuberculosis (and other airway

disease) by developing a system to detect abnormal airway changes. This could assist

in identification of airway involvement.

Airway segmentation and visualisation in CT is an active field but only a few

studies have focussed on the automated detection of airway pathology. The author is

not aware of any other research on automated airway assessment in children or cases

with TB. In this chapter a method is developed to model normal and pathological

variation in local regions of the airway. This method is validated on CT scans of

paediatric patients with TB but can potentially be applied to a wide range of disease

affecting the airways. Previous chapters performed 3D airway segmentation on chest

CT images and structure analysis on the segmented airway. A dataset of 3D airway

segmentations from patients are then registered. Once this has been achieved we are

in the position to analyse shape variation between airways in a dataset and use this

variation along with a classified training set to make predictions about any pathology

that might exist in the airways.

The classification methods, discussed in this chapter, derive features from both a

corresponding dense mesh representation and a radius representation of each airway.

These representations are discussed in Chapter 4 and build on airway segmentation

(Chapter 2) and airway structure analysis (Chapter 3). The dense mesh representa-

tion is designed to flexibly represent any region from the entire airway to a branch

section. The focus of this chapter is on the results of the entire airway analysis

method and the accuracy of using this computer assisted detection method to detect

paediatric pulmonary TB.

A method to extract features from a point distribution model (PDM) of local

regions of the airway surface is presented in Section 6.2.1.1. This method is compared

to an alternative approaches using radius based features (Section 6.2.1.3). Evaluation

is a key goal of this chapter and the methods of evaluation as well as the dataset used

are discussed in Section 6.3. Classification methods are then used to detect airway

pathology using the PDM and radius feature vectors (Section 6.2.2). Finally the

accuracy of this method for TB detection are presented in the results (Section 6.4).
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6.1 Background

This section introduces machine learning and statistical concepts that are useful for

airway analysis as well as surveying the literature for related shape modelling and

airway analysis methods.

6.1.1 Introduction to feature extraction and classification

Machine learning has developed into a major area of research. The importance of

the subject has increased with the availability of large quantities of data. There is

an increasing need to model and extract useful information from large and complex

datasets. A number of applicable concepts are briefly introduced.

Machine learning methods make use of a feature vector (or measurement vector)

to represent each object in the dataset. This is a vector that describes measurements

of an object in a way that is useful to distinguish the object from shapes in a different

class or category. For example, the feature vector can represent sensor measurements,

vertices of a mesh, or measurements of an object’s geometry. Vertices of an object

mesh are represented as a feature vector by including each dimension separately.

Thus, n points {(x1, x2, x3), ..., (xi, yi, zi), ..., (xn, yn, zn)} representing the surface of

an object is represented by the feature vector f = (x1, ..., xn, y1, ..., yn, zi, ..., zn) of

length 3n.

Supervised learning and unsupervised learning are two important categories in

machine learning. Both these classes of algorithms are designed to learn from samples

in a dataset but supervised learning requires labelled samples, where the true category

of a sample is known, while unsupervised learning can be used with unlabelled data

(unknown categories) (van der Heijden et al., 2004); unsupervised methods attempt to

find meaning from the feature vector by methods such as clustering and dimensionality

reduction.

Acquiring a large dataset of medical images can be difficult. Therefore, the size of

the feature vector can often be very large relative to the size of the training set. This

is far from ideal and makes overfitting likely. There are a number of unsupervised

learning methods that can be used to reduce the dimensionality of the dataset from the

covariance of the features. These include principal component analysis (PCA), which
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projects the features to an uncorrelated space, ordered by variance, and independent

component analysis (ICA), maximising the independence of each component. Fisher

discriminant analysis (FDA) is a supervised learning method, that reduces the data

to an (N-1) dimension by maximising the class separation, where N is the number of

classes. The methods mentioned above are all linear methods, in cases where there

is a nonlinear relationship between features, methods, such as principal curves and

kernels, generalise and extend PCA (Bishop, 2006; Hastie et al., 2011). PCA has also

been modified for a number of special cases including principal geodesic analysis for

non-Euclidean space (Fletcher et al., 2004).

A classifier is a function that maps an object represented by a feature vector (f)

onto a class label (k). In our case we are trying to distinguish between “normal” air-

ways and airways with pathology that causes deformation and stenosis. An example

of a simple classifier would be the nearest mean classifier, which determines the mean

in feature space of each class in the training set. A new shape is then classified ac-

cording to its distance to each mean. k-nearest neighbour determines the class of the

k nearest neighbours and uses this to classify the shape. This method is useful but

has high memory and computation costs for large datasets and number of features

(Bousquet et al., 2004; Russ, 2006). Linear discriminant analysis and support vector

machines are two powerful classification techniques and are introduced and used later

in the chapter (Section 6.2.2).

6.1.2 Statistical shape models

The previous section introduced some machine learning concepts; these methods can

be used to model and classify complex biological structures. Cootes et al. (1995)

introduced active shape models (ASM). These models represented each shape in a

dataset by a series of corresponding landmarks. The point distribution model (PDM)

is built using the covariance matrix of the landmark points in order to extract the

principal components ordered by the eigenvalues of the covariance matrix. In ASM,

these modes of variation are used to restrict the type of variation allowed by the model

and, therefore, assist in the segmentation of new shapes. Greyscale information can be

included to improve the segmentation via active appearance models (AAM). Mitchell

et al. (2001) use a combination of ASM and AAM in a fully automated segmentation
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method to detect the left and right cardiac ventricles from magnetic resonance images.

PDMs have been built to represent a number of biological shapes including atria

in the heart (Lötjönen et al., 2004), the human ear canal (Paulsen et al., 2002), the

pelvis (Meller and Kalender, 2004) and the prostate (Hu et al., 2011). de Bruijne

et al. (2003a,b) introduce the idea of modelling the cross sections and the medial

line, of a tubular object, separately. The medial line is constructed by finding the

centroid in each slice and the tubular sections are straightened using the medial

line as a reference before creating the PDM. These methods are commonly used to

assist in segmentation of new cases or develop personalised shape model for a new

patient using the statistical shape model (SSM) and a limited number of landmark

points. Personalised 3D models have application during surgery; Rajamani et al.

(2007) and Zachow et al. (2005) create shape models of the proximal femur and

mandible respectively, which can be used along with manual landmarks to create

personalised models.

PDMs can also be used to model normal and abnormal shapes in a dataset. Hut-

ton et al. (2003) and Hammond et al. (2004) model the variation of faces to detect

Noonan syndrome because Noonan syndrome can be identified by a number of facial

features. They represent each face as a dense surface mesh, build a PDM and repre-

sent each face by a feature vector of principal components. Hammond et al. (2004)

and Hutton et al. (2003) test number of classifiers for differentiating Noonan syn-

drome and controls, including: nearest mean, decision trees, neural networks, logistic

regression and support vector machines (SVM). They found SVM to be the most

effective classifier for this dataset with an average sensitivity of 92% and an average

specificity of 93%. However, nearest mean, neural networks and logistic regression all

had sensitivity and specificity greater than 83% and 86% respectively. While PDMs

show potential to model airway shape, in order to use them, new methods are re-

quired to identify suitable landmarks, register the airways, identify relevant regions

of interest for analysis, and extract useful features.

6.1.3 Airway Analysis

A number of studies have created methods that estimate automated branch diameter

calculations, from segmented adult airways, to provide the clinician with additional
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information (Kiraly et al., 2008; Palágyi et al., 2006; Tschirren et al., 2005a), in-

cluding overlayed heatmaps of airway characteristics including broncho-arterial ratio

for identifying COPD (Kiraly et al., 2008). A number of other methods have fo-

cussed on chronic obstructive pulmonary disease (COPD) and asthma identification

using cross section and radial based measurments (Fetita et al., 2010; Petersen et al.,

2010; Wiemker et al., 2004). These methods are useful but rely on identification of

pathology from local airway diameter.

Detection of airway pathology due to external changes such as lymphadenopathy

and congenital cardiac disease exhibit global changes that are difficult to identify

from local airway analysis. PDMs show potential to model more complex airway

shape variation. Deligianni et al. (2006) use a PDM of an airway phantom to model

breathing. Pinho et al. (2011) built a PDM of healthy tracheas. This model was

used to build personalised normal trachea models for patients with stenosed regions

in unhealthy tracheas. The difference between the models can be used to assist

with stent implants. This method focusses on modelling healthy tracheas but is not

aimed at analysis of the bronchi given the global variability of the airway shape and

complexity of a branching airway tree (Pinho et al., 2011).

Our computer assisted detection tool introduces a novel method to analyse regions

of the airway tree using features from both statistical shape models of a dense surface

mesh representations, and branch radius based representations of the airway. This

method develops multiple PDM representations for regions of the airways using the

corresponding airway meshes developed in Chapter 4. The classification of pathol-

ogy using the PDM of these regions is performed in a similar way to the method

that Hammond et al. (2004) used for facial morphometry, except, as the airway is

a branching structure, local models are developed and classified independently for

regions of the airway. Developing PDMs for the airways brings a number of unique

challenges, including: accurate correspondence and combining of multiple regions in

a final classification. Previously, automated airway analysis to assist in the detection

of pathology, has focussed on local radius and wall thickness measurements (Fetita

et al., 2010; Petersen et al., 2010; Wiemker et al., 2004) but does not consider global

shape changes. Statistical shape models have been used to model the trachea in a few

cases (Pinho et al., 2011) but these methods are not designed to model changes due

to airway pathology or extend to other airway regions. While other studies have only
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modelled breathing changes of the a single patient (Deligianni et al., 2006) and do not

consider inter-patient variability, in this chapter a powerful method is introduced to

build statistical shape models of local airway regions and use these models to identify

airway pathology across a dataset.

6.2 Method

To classify airway pathology, features were generated from point distribution models

(PDM) of the airway surface, as well as, from cross-sectional measurements (Section

6.2.1). These methods build on branch structure analysis and correspondence from

Chapter 3 and Chapter 4. Classification methods – that take the feature vectors as

input are used to identify new cases with airway involvement from TB (Section 6.2.2).

6.2.1 Feature Vectors

Feature vectors are derived from a PDM of the airway dataset and from cross sectional

sampling of each branch in the airway tree.

6.2.1.1 Method 1: Airway point distribution model

Each airway is represented by a dense surface mesh. The corresponding vertices of

each airway surface mesh can be used to build a PDM of the airway and extract a

set of principal modes that can be used to represent the variation of each airway.

Some of the variation between airways in the dataset is due to size, position

and rotation, which are related to patient age and scan position, and are not of

of interest for detection airway pathology. Therefore, the airways are first aligned

by generalised procrustes analysis (GPA). GPA is used to iteratively align objects

represented by a set of corresponding points using translating, scaling and rotation.

The implementation of GPA in this study is outlined in Appendix A.1.

Principal component analysis (PCA) was applied to the aligned airways to extract

the principal modes of variation of each airway region, which were used as features

for classification. PCA is discussed in Appendix A.2. Therefore, an airway can be

represented in terms of the mean shape x̄ and a displacement along each principal

component Φ by b:
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x ≈ x̄+ Φb (6.1)

The airway can be approximated by a set of m eigenvectors Φ = (φ1|φ2|...|φm)

and b = (b1, ..., bm)
T . This means that a dense surface mesh model of a shape can

be reduced to a much shorter feature vector represented in terms of the principal

components of shape variation.

PCA was applied to a dataset containing both TB and non-TB cases, which

models airway variation from normal to pathological, and these features are used to

perform a binary classification of pathology for an airway region. An alternative set

of features could be constructed from separate PCA representations for both TB and

non-TB cases. A measure of similarity such as Mahalanobis distance could then be

used to determine the nearest class. This alternative method is worth exploring in

future but may require careful selection of the similarity measure.

6.2.1.2 PDMs for local region analysis

Variation in airway shape could potentially be modelled at a number of levels from the

variation in a single cross-section of a branch to global variation of the entire airway.

In this study, local regions of the airway are modelled individually where each region

consists of a parent branch, the bifurcation region and two child branches. Modelling

each branch individually is not as effective because variation of a branch relative to

neighbouring branches is important; lymphadenopathy can lead to branch deforma-

tion as well as stenosis (an example of tracheal displacement by lymphadenopathy is

presented in Andronikou and Wieselthaler (2004)). Individual branch shape analy-

sis also means that a larger portion of the model’s variation is influenced by mesh

artefacts at the beginning and end of the branch.

Alternatively, shape models can be applied to the entire airway for analysis. How-

ever, PCA, is a linear projection to a lower dimensional space and with each additional

generation of a tree structure the variation of the airways becomes increasingly non-

linear. While there are benefits to modelling the relationship between parent and

child branches, there is limited value to modelling the relationship between the shape

changes of second order connected branches. There are nonlinear formulations of

PCA (including Kernel PCA in Schölkopf et al. (1997)), but because it is useful to
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model the airway locally, modelling the airway as a set of 3-branch structures using

PCA is proposed. An example 3-branch region is the RMB-RUL-BI region shown in

Figure 6.1.

Figure 6.1: Shape models are generated from 3-branch regions (RMB-RUL-BI region in this
example)

Therefore, this method creates a number PDMs of the airway for variation 3-

branch regions. Each 3-branch region overlaps the previous region. For example, the

RMB is represented in both the trachea-RMB-LMB and RMB-RUL-BI regions. These

regions are automatically identified (Chapter 3 and Chapter 4), a point distribution

model is built from the dataset and each 3-branch region is assigned a feature vector

(b) that can be used for classification.

6.2.1.3 Method 2: Radius based features

The previous section describes a method to extract feature vectors from PDMs of local

airway regions in order to detect pathology. For comparison, feature vectors based

on cross-sectional measurements were also derived. A representation of the airway in

terms of cross sectional measurements is described in Section 4.2.1 in Chapter 4. To

recap, vectors orthogonal to the branch centreline were projected to the surface and

the intersection between the mesh and the vector was found. Each branch can then be

represented as a series of n cross sectional radii measurements where each cross section

is sampled 4 times at 90◦ angles i.e. B = {r1, r2, ..., rn} where ri = (ri1, ri2, ri3, ri4)
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at [0, 1
2
π, π, 3

2
π]. Figure 6.2 shows ri sampled along each branch (for visualisation

purposes, fewer ri are shown than used in the analysis).

Figure 6.2: Branch radius measures using ray-surface intersection. 4 intersections are shown
for each equidistant centreline point.

Diameter based features

The first set of features used are the mean branch diameters from 3 equal sections

of each branch. The mean diameter of a branch section can be calculated from the

representation as:

d̄ =
1

2(q − p+ 1)

q
∑

i=p

4
∑

j=1

rij (6.2)

where p and q are the start and end points of the region. These features are normalised

across airways by the branch length (l). As with the PDM derived features, the same

3-branch regions were used for this method (each region is represented by 9 features).
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Features based on observed stenosis

An alternative set of radius derived features is also presented in this study. Three

features were calculated for each branch:

1) the maximum ratio of the orthogonal diameters for each branch

f1 = max

(

max

(

di1
di2

)

,max

(

di2
di1

))

(6.3)

where di1 = ri1 + ri3 and di2 = ri2 + ri4

2) the ratio of the average branch diameter and branch length

f2 =

(

d̄

l

)

(6.4)

3) the local minima and maxima of the diameters di1 and di2, where i = (1, n)),

were identified from B′ and B′′. The maximum ratio of local minima and neighbouring

local maxima was used as a feature:

f3 = max

(

lmaxa
+ lmaxb

2lmin

)

(6.5)

These features were based on clinical observations and were indicators of branch

circularity, thickness and local stenosis, and were calculated for the trachea, RMB

and LMB. The angle at bifurcation was also calculated for each airway. Therefore,

feature vectors could be generated from each branch from the radii. For consistency

the same three-branch regions were used as Section 6.2.1.2.

6.2.2 Classification

The training and test datasets were used to evaluate the algorithms ability to distin-

guish between TB and non-TB patients. Feature vectors, using the methods described

in the previous sections, were used as input for a classifier and the classifier was eval-

uated on unseen cases. Linear Discriminant Analysis and Support Vector Machines

were used for classification. These methods are outlined in Appendix A.3.
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6.2.2.1 Classification of obstructed branches

A small proportion of cases have an obstructed branch in the three-branch region. An

obstructed branch in the main bronchi is caused by complete stenosis of that branch.

Obstructions considerably change of the shape of the airway and, therefore, act as

outliers that reduce the accuracy of the model. Instead, the branching structure (dis-

cussed in Chapter 3) was used to identify first or second generation bronchi without

child branches. These obstructed regions were automatically identified and excluded

from the classification. Assuming that completely obstructed branches imply pathol-

ogy, these cases can be reincluded in the final classification result.

6.2.2.2 Combining classification results from multiple regions

Each region consisting of 3 branches and the connecting bifurcation region was eval-

uated independently, but combining multiple regions could be beneficial for a final

disease classification. The features cannot be easily combined in the classification

because a number of cases are automatically excluded due to obstructed branches

in the region. Therefore, a number of cases will only have features for some of the

regions being analysed.

However, the probability of disease from the classification of each region can be

combined with a weight:

P (TB|X) = wPT + (1− w)PR (6.6)

where, for example, PT and PR are the posterior probabilities (generated from an

LDA classifier) from the trachea-RMB-LMB and RMB-RUL-BI regions and a weight

w = 0.5. This illustrates one method of combining multiple classifications. For cases

where either PT or PR are missing due to an obstructed branch, only one posterior

probability is used for final classification.

To improve the sensitivity at very high specificities (a likely operating point), a

very high threshold could be applied to one region and used in combination with the

classification of the second region. This would mean that only definite cases from the

first region are added to the final classification:
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P (TB|X) = PT ∨ (PR > w) (6.7)

where w = 0.9.

Therefore, the classifications are performed on three-branch regions of the airway

and classifications from multiple regions can be combined. Obstructed branches can

also be automatically identified and included to improve the generalisability of the

classifier.

6.3 Evaluation Methods and Data

The airway analysis algorithm was evaluated on a paediatric chest CT dataset, and

a set of metrics were used to evaluate performance.

6.3.1 Datasets

The paediatric TB datasets that were used in this research are discussed in Section 2.4

of Chapter 2. In order to clarify the results, a brief summary is presented here. The

dataset used to train the model is made up of chest CTs of children with and without

pulmonary TB. A set of paediatric non-TB cases was acquired from Great Ormond

Street Hospital, London, UK (referred to in this study as GOSH2010 ) and TB cases

from Tygerberg Hospital, Western Cape, South Africa (TYG2010 ). These cases

were used to develop the model and choose parameters. In 2012, two dataset were

collected Tygerberg Hospital, with and without TB (referred to as TYGTB2012 and

TYGnonTB2012 ). These were previously unseen sets used for evaluation. Several

cases with artefacts from tubes or severe movement artefacts were excluded from the

study. Table 6.1 shows the size and mean age of the patients of each dataset. Voxel

size in the axial plane ranged from 0.3 - 0.5 mm and slice thickness 0.7 - 1 mm.

Non-TB patients in the dataset include children with the following conditions:

parenchymal lung disease such as interstitial lung disease, congenital lung malforma-

tions which affect the parenchymal tissue and not the airways; suspected lung metas-

tases; and infective conditions other than TB. This will include cases of bronchiectasis,
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Table 6.1: Mean age and std deviation of each dataset

Dataset Size Age ± Std (years)

Training (GOSH2010) 37 3.2± 1.8

Training (TYGTB2010) 52 1.8± 2.2

Test (TYGTB2012) 42 3.1± 3.8

Test (TYGnonTB2012) 48 2.4± 2.8

cystic fibrosis and pleural disease. Patients with suspected TB undergo a CT scan

when there are signs or symptoms of airway involvement (du Plessis et al., 2009) and

therefore, all TB cases in this dataset have suspected airway involvement.

Due to the challenges of detecting paediatric TB, a number of cases may have

suspected TB but will not be definitively classified. If there is large uncertainty in

the clinical labels, it is not possible to train or evaluate the accuracy of the method.

Therefore, in this study, non-TB cases were compared to probable and definite TB

cases. In future, an alternative evaluation could be performed, using cases originally

suspected of TB, only some of which would later be confirmed as TB cases. This

would either require the system to be incorporated into the clinical workflow, or

knowledge of the clinicians initial suspicions (not available in this study).

In summary, a set of non-TB patients is compared to a set of patients with pul-

monary TB (and suspected airway involvement). This computer assisted detection

tool is aimed at detecting the approximately 40% of paediatric TB patients with air-

way involvement, to provide an additional test that can improve the overall detection

of TB by detecting the subset with airway involvement.

In paediatric pulmonary TB, the most common locations of lymphadenopathy are

subcarinal (90%), hila (85%), anterior mediastinum (79%) and paratracheal (63%)

(Andronikou et al., 2004). Bronchial compression caused by lymphadenopathy is most

apparent in the LMB, RMB, BI and trachea (Andronikou et al., 2004). Therefore for

identifying TB, two regions were modelled (trachea-RMB-LMB and RMB-RUL-BI).

This could be extended to the rest of the airway if useful for modelling additional

airway pathology. The model is aligned using the branching structure and extracted

mesh, and because three branches are modelled at any one time, no more complexity

is added by analysing further generations.
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6.3.2 Shape Model Evaluation

Before analysis of the accuracy of classification, the characteristics and performance of

the point distribution model were analysed. Measures of compactness, generalisation

and specificity, that are outlined by Styner et al. (2003), were used to evaluate the

model.

6.3.2.1 Model Variance

A compact model can represent the variance within the dataset with only a few

parameters. The variance can be calculated as a function of the number of shape

parameters (modes of variatation), as shown in Equation A.7 of Appendix A.

6.3.2.2 Model Generalisation

The model generalisation represents a model’s ability to represent unseen cases (Styner

et al., 2003). This was evaluated using leave-one-out reconstruction of the dataset.

For each case in the dataset, the PDM was built without the case, and used to re-

construct the case using M modes of variation. The mean absolute distance (MAD)1

of the vertices was then used to approximate the error of the PDM representation of

each case. The mean and standard deviation of the MAD values for the entire dataset

was calculated. Confidence intervals were found by the Central Limit Theorem.

6.3.2.3 Model Specificity

Model specificity evaluates the ability of the model to only generate shapes that are

similar to those found in the dataset (Styner et al., 2003). 1000 new instances of

the feature vector bi were generated for each PDM. Monte Carlo simulations were

used to randomly generate bi from a multivariate normal distribution with standard

deviation σi =
√
λi and mean µi = 0 (Hu et al., 2010). MAD from each instance

to each case in the dataset was calculated, and the minimum distance was recorded,

which represents to closeness of the instance to the nearest case in the dataset. The

mean and standard deviation of the minimum MAD distances were calculated.

1The mean absolute distance is defined as the mean distance between the vertices of the model
representation and the vertices of the corresponding case (Styner et al., 2003)
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6.3.3 Evaluation of Classification

Before the results of the airway classification algorithm are presented, a few methods,

that will be used to quantitatively evaluate the accuracy of the computer assisted

detection system, need to be introduced.

Most classifiers are trained using a labelled training set and these labels are com-

monly based on other clinical tests or expert annotations of the images. Each classifier

finds a decision boundary, a boundary with as many dimensions as features, that de-

fines the regions in feature space where a new sample would be labelled as a specific

class.

Classification algorithms have varying degrees of complexity in the optimisation

procedure and the decision boundary. If only a single set is used for training and

validation then it is likely that the classification results will be “overfitted” – i.e.

the decision boundary too closely models variation within an individual dataset and

results will not be representative of the accuracy of classifying new data (van der

Heijden et al., 2004). This can be overcome by using a training and test set, where

the test set is previously unseen by the classifier.

For small datasets (size m), it is often not feasible to divide the dataset in into

a training and test set. Cross-validation (CV) divides the dataset (D) into n equal

subsets (di) of sizem/n. The training and classification algorithm is run n times where

the algorithm is evaluated on samples di and trained on samples D− di. Therefore,

all data is used for training and validation but each validation set is “unseen” by each

classifier. The extreme of this method is leave-one-out cross validation (LOOCV)

where n = m; training on all cases but one and testing on a single case in each step.

This method allows the largest number of cases to be used for each training but is

the slowest form of CV.

Some classifiers such as Kernel SVM allow parameters to be set within the al-

gorithm. If these parameters are chosen using the whole dataset then this can also

be a cause of overfitting. Therefore, if a cross-validation method is used to evaluate

the classifier, a nested cross-validation should applied. For each step in the CV, a

nested loop is used to choose optimal parameters. This method shows very similar

performance to an independent test set (Varma and Simon, 2006). This has a con-

siderable computational performance cost but is only required for validation and not
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classification of new cases.

In order the evaluate the performance of a classifier a good performance measure

needs to be chosen. Sensitivity and specificity are useful measures. Sensitivity (Se)

is the proportion of correctly identified positive cases (Se = TP
TP+FN

), and specificity

(Sp) is the proportion of correctly identified negative cases (Sp = TN
TN+FP

), with the

true positives (TP ), true negatives (TN), false positives (FP ) and false negatives

(FN) (Altman et al., 2005). Therefore, a classifier has a perfect accuracy if Se = 1

and Sp = 1. These values can be calculated by comparing the true class label of

each sample and the label identified by the classifier. The problem with a single

measurement of sensitivity and specificity is that it only gives a snapshot of the

methods performance. This is insufficient if the likely operating point – the point

used in clinical practice – requires a different specificity or if different methods are

being compared, which were evaluated at different specificities.

A receiver operating characteristic (ROC) curve is a plot of sensitivity versus

(1-specificity) over the entire range of (0,1). A perfect classifier would have a curve

along the left and top of the plot; a classifier that is no better than chance of detecting

differences between groups would have a diagonal line running from [0,0] to [1,1]. This

is a very useful visualisation of the performance of a classifier at various operating

points but for comparing multiple systems it is also useful to have a single performance

measure such as Area-Under-the-Curve (AUC) of the ROC (Altman et al., 2005). A

perfect classifier will have an AUC=1 and a classifier that is no better than chance

has an AUC=0.5. Many classification algorithms produce a probability associated

with the likelihood of disease for each sample (the posterior probabilities in the case

of Bayesian based classifiers). These probabilities can be used to generate the ROC

curve. In other cases multiple classifications can be made at various specificities by

modifying the cost function, prior probabilities or repeating samples from certain

classes in the training set (van der Heijden et al., 2004).

With any performance measure, it is also useful to state the belief that we have

in that measurement. Confidence intervals (CI) are a measure of the range of sam-

ple means of sets selected from a population. This is a useful measure of the range

in measurements of sensitivity, specificity and AUC that we might expect on new

datasets. A 95% confidence interval is a common choice and is the interval where the

mean, of 95% percent of sets of samples from a population, falls. This is commonly
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calculated by using the Central Limit Theorem to assume a normal distribution of

the sampling mean and then approximating the standard error (Se) from the sample

standard deviation (Altman et al., 2005). The Se along with the z-score can be used

to find the CI. However, this can be problematic for small datasets and, therefore,

a more direct approach is bootstrapping (Altman et al., 2005; Hastie et al., 2011).

Bootstrapping generates a number of new sample sets from the original dataset by

resampling with replacement. Therefore, each sample in the population can be picked

more than once during the generation of a new set of samples. Statistics about the

population including CI can be calculated directly from the generated samples. Alt-

man et al. (2005) recommend 50-100 replications as being adequate for the CI of a

mean and bias corrected and accelerated method (BCa) as the preferred approach.

It is important to note that confidence intervals are not directly equivalent to statis-

tical significance when comparing two ROC curves with CI. The confidence interval

must be calculated from the difference of means to be appropriate (Altman et al.,

2005). However, if confidence intervals from two means do not overlap then they

are significant but if they do overlap then they may or may not be significant and a

correct calculation of significance is required. These methods were used to evaluate

the performance of the computer assisted detection algorithm at detecting signs of

tuberculosis in paediatric airways.

6.4 Results

The previous sections of this chapter have proposed methods to create feature vectors

for corresponding dense mesh representations of local regions of the airway. A number

of algorithms are also introduced that can classify TB, and other airway disease that

influence airway shape, based on the feature vectors and a labelled training set. The

entire airway analysis algorithm was trained and evaluated on CT datasets obtained

from hospitals in South Africa and the U.K. Results of the airway classification to

detect tuberculosis are presented in this section based on training and test sets of

paediatric patients with and without tuberculosis.

166



CHAPTER 6. AUTOMATED DETECTION OF PAEDIATRIC TUBERCULOSIS

6.4.1 Shape model derived features

6.4.1.1 Point distribution model representation

Results for local airway regions using PDM derived features are presented first. The

variation of the first 10 PCA modes for the trachea-RMB-LMB and RMB-RUL-BI

regions are shown in Figure 6.3 - Figure 6.6. The centre column shows the mean

airway (x̄) with variation (x = x̄ ± Φibi). Using bi = ±3
√
λi shows the variation

of one mode three standard deviations from the mean in the dataset (Cootes et al.,

1995). Dark regions in the figures show the local PDMmodel and the light region is an

example airway that is registered to the model to aid visualisation. These principal

components exhibit a range of changes including branch narrowing, local stenosis,

deformation, length and angular changes. These modes also include variation that is

considered pathological such as deformation and stenosis of branches. For example,

the fifth mode of Figure 6.3 shows central narrowing of the LMB while the seventh

mode of Figure 6.6 shows narrowing of the BI. Note that due to the perspective some

of the 3D variation is not visible in the figures.

Figure 6.7 shows two example airway segmentations from a TB and non-TB pa-

tient each with a feature vector of principal component weights (bbb):

bbb(nonTB) =


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Particularly evident in this example is narrowing of the LMB for the TB case.

This is can be observed in the third and fourth mode of variation (Figure 6.3) and

is consistent with the third and fourth column of the feature vectors: b(nonTB)

and b(TB). However, many more modes are required to distinguish the cases in the

dataset. Small differences are also visible between the 11 component representation

of the trachea-LMB-RMB region (dark blue) and the original airways (light blue).
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Figure 6.3: Modes of variation 1-5 for the trachea-LMB-RMB (bi = 0 is the mean model
and bi = ±3

√
λi represents the shape 3 standard deviations along each mode)
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Figure 6.4: Modes of variation 6-10 for the trachea-LMB-RMB (bi = 0 is the mean model
and bi = ±3

√
λi represents the shape 3 standard deviations along each mode)
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Figure 6.5: Modes of variation 1-5 of the RMB-RUL-BI (bi = 0 is the mean model and
bi = ±3

√
λi represents the shape 3 standard deviations along each mode)
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Figure 6.6: Modes of variation 6-10 of the RMB-RUL-BI (bi = 0 is the mean model and
bi = ±3

√
λi represents the shape 3 standard deviations along each mode)
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(a) non-TB case (b) TB case

Figure 6.7: Example airways from the non-TB and TB datasets with overlayed 11 com-
ponent representation of the first 3 branches. Small deviations of the model’s shape from
the airway shape is explained by higher order modes that have been removed from the
representation.

These differences are represented by the remainder of the principal components that

are dropped from the model.

6.4.1.2 Model evaluation

PCA produces modes of variation that are ordered by the contribution to the total

variance within the dataset. Figure 6.8 shows the contribution of each mode to the

total variance. In both cases approximately 90% of the airway variation in the dataset

is represented by the first 11 modes.

The model generalisation and model specificity for both PDMs are shown in Figure

6.9 as a function of the number of modes of variation (M). As expected the model

generalisation – the ability of the model to represent unseen cases– performs better

(decreases) with increasing number of modes. Also as expected, the specificity (the

ability of the model to only represent similar cases) performs worse (increases) with

increasing number of modes. The RMB-RUL-BI model outperforms the Trachea-

LMB-BI model both in terms of generalisation and specificity. This is probably due
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(a) trachea-RMB-LMB region
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(b) RMB-RUL-BI region

Figure 6.8: The proportion of the total variance in the dataset that is represented by n

principal modes. Principal modes are ordered by variance and, therefore, higher modes
will make smaller contributions. In this dataset, the first 11 modes represent ≈ 90% of the
variation.

to less variance in the region.

6.4.1.3 Detection of paediatric pulmonary tuberculosis

Fisher mapping is an affine mapping that maximises the ratio of the inter/intra class

variability (van der Heijden et al., 2004). Plots of Fisher mapping provide a useful

visualisation of the linear separability between classes for a set of features. Figure

6.10 and 6.11 show the separability of the datasets represented by 11 principal modes

of variation (90% of the dataset variation) using Fisher mapping. The figures show

the potential of the principal components to separate the classes of TB and non-

TB patients. Good separability can be achieved for both the training and test sets.

However, the training set (Figure 6.10b and 6.11b) show better separability than the

test set (Figure 6.10c and 6.11c) for both regions. The feature vector of each case is

shown in Appendix D and the mesh representation of each airway in the test set is

shown in Figures 4.16 and 4.17 of Chapter 4.

Figure 6.12 shows ROC curves, for the two regions of interest, distinguishing TB

from non-TB cases, using linear discriminant analysis (LDA) with leave-one-out cross

validation. 95% confidence intervals for the sensitivity and AUC of the ROCs were
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(b) Specificity of the model

Figure 6.9: Generalisation G(M) and specificity S(M) of the model with confidence intervals,
as a function of the number of modes (M), for the Trachea-LMB-RMB and RMB-RUL-BI
regions.
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(b) Test set: Tygerberg TB 2012 and Tyger-
berg non-TB 2012

Figure 6.10: Fisher mapping of first 10 modes plotted against 11th mode for the trachea-
RMB-LMB region
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estimated using bootstrap BCa with 1000 replications. Figure 6.12a shows evaluations

on the training set (Tygerberg-GOSH 2010 ) and test set (Tygerberg 2012 ) using the

first three branches as the region of interest. Classification of TB patients in the

training set (AUC: 0.96(0.86 − 0.99)) performs better than classifying TB patients

in the test set (AUC: 0.87(0.77 − 0.94)). While the performance of the classifier is

better for the training set, the difference between the AUCs is not significant (p=0.05).

Figure 6.12b shows that second order bronchi can also play a role in TB detection

with an AUC of 0.81(0.68−0.90) for the test set. While ROC curves of the validation

set are the most useful for evaluating the algorithm, the other curves provide useful

insights into the algorithm. The training set is made of of non-TB cases from GOSH

and TB cases from Tygerberg. The improved accuracy of the training set could be

explained by algorithm parameters being based on this set but it is also likely that the

non-TB set from GOSH might have less severe pathology than the non-TB patients

from Tygerberg (in the test set).

These ROC curves were generated using LOOCV and show that a high AUC can

be achieved for classifying TB on the test set. The next set of results compares the

relative performance of combining multiple regions and obstructed branches. As we

are interested in relative performance for these next evaluations, the training and test

sets were merged into a Complete dataset to work with a larger dataset and smaller

confidence intervals.

The classification from multiple regions can be combined by weighting the prior

probabilities (as discussed in Section 6.2.2.2) and indicates a trend in improved per-

formance (Figure 6.13). Figure 6.13a uses the a weighted combination of the prior

probabilities of the two regions (see Equation 6.6) while Figure 6.13b applies a high

threshold to the second region so that only definite cases are added to improve the ini-

tial classification using the first three branches (see Equation 6.7). The first method

improves the general performance while the second method improves performance at

high specificities (a likely operating point). These methods offer small improvements

but are considerable at certain specificities – a 10-20% improvement at a number of

points. However, the increase in AUC is not significant (p=0.05); with a larger vali-

dation set, the CI would be smaller, and these improvements should become clearer.

A number of cases have complete obstruction of a branch in the region being eval-

uated. In the trachea-LMB-RMB region there were 19 obstructions in the 160 cases
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(a) Training set: Tygerberg TB 2010 and
GOSH non-TB 2010
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(b) Test set: Tygerberg TB 2012 and Tyger-
berg non-TB 2012

Figure 6.11: Fisher mapping of first 10 modes plotted against 11th mode for the RMB-
RUL-BI region
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Tygerberg−GOSH 2010 AUC: 0.96 (0.86−0.99)

Tygerberg 2012 AUC: 0.87 (0.77−0.94)

(a) Trachea-RMB-LMB
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Tygerberg−GOSH 2010 AUC: 0.95 (0.85−0.99)

Tygerberg 2012 AUC: 0.81 (0.68−0.9)

(b) RMB-RUL-BI

Figure 6.12: ROC curves for the two regions of interest using the training and test sets (the
error bars show the 95% confidence interval for the sensitivity)
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Complete dataset AUC: 0.9 (0.84−0.94)

Weighted combination AUC: 0.93 (0.88−0.96)

(a) Weighted combination (Equation 6.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity

S
e
n
s
it
iv

it
y

 

 

Complete dataset AUC: 0.9 (0.84−0.94)

Thresholded combination AUC: 0.92 (0.86−0.95)

(b) Threshold combination (Equation 6.7)

Figure 6.13: Classification based on 3-branch combinations (the error bars show the 95%
confidence interval for the sensitivity)

(17 TB and 2 non-TB). In the RMB-RUL-BI region there were 42/160 obstructions

(31 TB and 11 non-TB). These cases were automatically identified from the branch-

ing structure and excluded from the statistical model. By labelling these cases as

TB cases and including them in the classification, a similar performance is achieved.

Included obstructed branches for the trachea-LMB-RMB (AUC: 0.90 (0.85-0.94)) and

for the RMB-RUL-BI region (AUC: 0.85 (0.78-0.91)), as shown in Figure 6.14. This

allows more extreme variation to be included in the evaluation without impacting the

statistical model. However, obstructions become less sensitive to to pathology with

smaller branches because the likelihood that the obstruction is caused by imaging

artefacts increases.

The previous figures have shown ROC with the accuracy of distinguishing be-

tween TB and non-TB patients using airway shape features. These results show the

evaluation of the airway detection algorithm on training and validation sets. All the

methods use 11 principal components, representing 90% of the variation, for clas-

sification. Figure 6.15 considers the impact of the number of components on the

accuracy of detecting paediatric pulmonary TB. Figure 6.15a and Figure 6.15b show
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Complete dataset AUC: 0.9 (0.84−0.94)

obstructed branches included AUC: 0.9 (0.85−0.94)

(a) trachea-RMB-LMB region
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Complete dataset AUC: 0.9 (0.83−0.94)

obstructed branches included AUC: 0.85 (0.78−0.91)

(b) RMB-RUL-BI region

Figure 6.14: Including obstructed branches in airway region classification (the error bars
show the 95% confidence interval for the sensitivity)

the AUC vs the number of components used for detecting pathology in the trachea-

RMB-LMB and RMB-LMB-RUL regions. The AUC was calculated using LOOCV

on the validation set.

Interesting to note, is that large improvements in performance are seen when

adding certain components while others offer no improvement (or even lower the

accuracy). The modes that allow TB and non-TB cases to be distinguished include

the modes 1, 2, 5 and 10 for the trachea-RMB-LMB region and modes 1, 6, 7, 8,

11 and 14. Other modes may also contribute to the classification but only improve

the classification when used in combination with one of the modes described above.

Figure 6.15b shows that the AUC could be improved further if more modes than those

contributing to the 90% variance were included. The plots also show that adding

certain modes can worsen the performance of the classifier; fitting a classifier to a

feature that does not contribute to the distinguishing the datasets has the potential

to be penalised by the cross validation.
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(a) trachea-RMB-LMB region. Including modes
1, 2, 5 and 10 improves the accuracy of the clas-
sification.
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(b) RMB-RUL-BI region. Including modes 1,
6, 7, 8, 11 and 14 improves the accuracy of the
classification.

Figure 6.15: AUC as a function of number of modes used in the classification.

6.4.1.4 Support vector machine classification and separate training and

testing sets

In this study a separate training and validation set were used. The training set

was used to determine parameters throughout the model while the previously unseen

validation set was used for evaluation. Results were generated using the classifier

with LOOCV on the validation set. A separate classification was made using the

training set for comparison.

LOOCV was used instead of training the classifier on the training set because,

more severe pathology appears to be present in the Tygerberg non-TB test set than

the GOSH non-TB training set. This was also qualitatively observed. The classifier

would, therefore, biased to classifying many more cases in the test set as TB (because

of the increase levels of pathology). In order to get in a suitable range of specificities,

for this case, a very high threshold for classifying TB has to be applied to the posterior

probabilities of classifier. This can also be seen from the differences in class separation

between the two sets in Figure 6.10 and Figure 6.11. Using this form of test an AUC of

0.78 (0.66-0.87) was obtained for the trachea-RMB-LMB region and an AUC of 0.77

(0.64-0.86) was obtained for the RMB-RUL-BI. An almost 10% drop in performance.

This performance was regained if the GOSH non-TB and Tygerberg non-TB were
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divided between the training and test sets.

The results discussed in this chapter use a LDA classifier for evaluation. A SVM

classifier was also applied to the dataset but obtained similar results on an initial

evaluation (see Irving et al. (2011a)). Therefore, to improve algorithm speed LDA

was used.

6.4.2 Radius derived features

The previous section discusses and evaluates the airway shape analysis method de-

veloped in this project. That version of the method uses features derived from the

PDM of 3-branch regions of the airway. Alternate feature vector representations of

the airway (discussed in Section 6.2.1.3) were also explored and results are presented

here for comparison.

Figures 6.16a and 6.16b show results for the two regions using the average di-

ameter based features. These features were derived from the average diameters of

three equal sections of each branch. The method achieved a fair classification rate

of 0.72(0.59− 0.83) on the validation set for the first region but failed on the second

regions 0.59(0.46 − 0.73). This suggests that branch diameter is not enough for the

detection of airway shape variation from paediatric TB, and other methods to model

variation – including PCA – can improve detection.

The second set of radius based features attempted to classify TB pathology based

on observations of airway changes in the training set. This method used ratios of

orthogonal diameters to represent branch compression, ratio of diameter to length

to represent branch narrowing, detection of local minima to model local stenosis

and a measurement of the carinal angle. These results improved on the previous

method with a classification AUC of 0.83(0.73 − 0.91) and 0.75(0.64 − 0.85) on the

validation set for the trachea-RMB-LMB and RMB-RUL-BI, respectively (Figures

6.16c and 6.16d). These results were not as good as the results from the modes of

the point distribution model (as discussed in Section 6.4.1) of 0.87(0.77 − 0.94) and

0.81(0.61− 0.90) (as shown in Figure 6.12 and presented again in Figures 6.16e and

6.16f for comparison).

The significance of the AUC improvement was calculated using bootstrapping

(bias corrected and accelerated with 5000 replications using matlab’s bootci func-
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tion) with a two-tailed Monte Carlo technique. Assuming a significance level of

α = 5%, the PDM derived features were significantly better than the average diam-

eter derived features for both the Trachea-RMB-LMB (p=0.024) and RMB-RUL-BI

regions (p=0.013). While the PDM derived features are not significantly better than

the second radius based method (p=0.405 and p=0.465 for the two regions respec-

tively), there is a trend in performance improvement. The PDM modes also maintain

a significantly better sensitivity (p<0.05) at very high specificities compared to both

alternative methods, which is a useful operating point. The flexibility of the PDM

to model variation automatically without having to “design” features for each type of

object is also a considerable advantage.

6.4.3 Run time

This software was written using a combination of Matlab R2011a and C++. C++

was incorporated to improve the speed of various bottlenecks. The software was

evaluated on system with a 2.80GHz Intel quad-core processor and 6GB of ram. The

mean time for segmentation of each airway was 168±57s. Extraction of the centreline,

pruning and branch point detection for each airway took a mean time of 22 ± 18s.

Once each airway was segmented and the structure extracted, then mesh generation,

registration, training and classification of the entire 179 patient dataset took 1162s

on a single run.

6.5 Discussion

The airway analysis method discussed in this thesis is able to accurately distinguish

between TB and non-TB airways by examining regions of the airway likely to be

affected by lymphadenopathy (AUC of 0.87(0.77− 0.94) and 0.81(0.68− 0.90)). The

training set performed better on all regions (although the improvement in AUC is

not significant p=0.05). This better performance in the training set could be due

to the fitting of parameters but is more likely that the GOSH non-TB dataset used

in this step contains less airway pathology. The test set performed better on the

trachea-RMB-LMB region suggesting that this is more useful than the RMB-RUL-BI

region. Combining the classification of both regions yielded the best results for the
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Tygerberg 2012 AUC: 0.72 (0.59−0.83)

(a) trachea-RMB-LMB region
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(b) RMB-RUL-BI region

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity

S
e
n
s
it
iv

it
y

 

 

Tygerberg−GOSH 2010 AUC: 0.96 (0.89−0.99)

Tygerberg 2012 AUC: 0.83 (0.73−0.91)

(c) trachea-RMB-LMB regio
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(d) RMB-RUL-BI region
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(e) Trachea-RMB-LMB
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(f) RMB-RUL-BI

Figure 6.16: ROC curves for the two regions of interest using the training and test sets (the
error bars show the 95% confidence interval for the sensitivity). a) and b) Average diameter
based features (described in Section 6.2.1.3). c) and d) Features based on observed stenosis
(described in Section 6.2.1.3). e) and f) PDM derived features (repeat of Figure 6.12).
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entire dataset.

PDM based features performed better than two versions of radius based features

on the validation set, particularly for the second generation region. Radius features

1 has AUC of 0.72(0.59 − 0.83) and 0.59(0.46 − 0.73). Radius 2 has an AUC of

0.83(0.73−0.91) and 0.75(0.64−0.85). The PDM derived features show more promise

and this is likely to come from the ability to represent more complex variation in

feature space than cross-sectional radius derived features, which focus on local regions

of the airway. This would include spatial variation of branches in the region. An

additional benefit of PDM based features is that the principal modes are adaptable

to the training set and do not have to be specifically chosen with a particular type of

deformation in mind.

The benefits of a more complex classifier were evaluated using Support Vector

Machines with a polynomial kernel and nested cross validation for parameter selection

and testing. This did not improve the performance of the classification and, in the

interests of speed, LDA was used. All parameters were determined on the training sets

(TYGTB2010 and GOSH2010 ). Leave-one-out cross validation was used to evaluate

the performance of the TB classification algorithm on the training and test datasets.

Initially, the original datasets were used to train the linear classifier while the new

datasets were used to test the classifier. This led to reduced performance (AUC

= 0.78 (0.66-0.87)) probably because the nonTB Tygerberg dataset contains more

severe non-TB pathology than the GOSH dataset and, therefore, different optimal

decision hyperplanes (See Figure 6.10 and 6.11).

The methods were evaluated on local three-branch regions of the airway, which

were chosen as the most likely to exhibit signs of deformation from lymphadenopathy

and were used to classify each airway as TB or non-TB. The principal modes of each

local region give information represent specific types of deformation and stenosis.

Given a labelled dataset of the position of the lymphadenopathy then the classi-

fier could be used to label lymphadenopathy e.g. hilar, mediastinal or paratracheal

lymphadenopathy.

Classification aims to distinguish pathological shape variation from inter-patient

variation, and variation due to age and breathing artefacts. The standard deviation

of the patients’ age is approximately 3 years (see Table 6.1). With a larger dataset,

it would be possible to divide the dataset into age groups and possibly improve the
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performance by removing noise caused by age variation. However, studies have shown

that the proportions of the airway do not change considerably with age in children

(Masters et al., 2006). Breathing artefacts could also add noise to shape-based airway

classification as it is not possible to perform a breath hold scan on young patients.

As discussed in Section 1.5, the bronchi lengthen and dilate during inspiration but

these changes are expected to be distinguishable from TB pathology. The accuracy

of the classifier also indicates that breathing variation does not have a considerable

effect. However, the results could possibly be improved if breathing was explicitly

modelled.

6.6 Conclusion

Paediatric TB is still difficult to diagnose and this study shows the potential of

automated airway shape analysis to assist. The chapter uses a dataset of TB patients

(with signs indicating possible airway involvement) and non-TB patients to develop

a method that uses local airway deformation to detect new cases with TB. Features

are derived from airway cross sections and point distribution models of the airway

surface, and used to train a classifier. The method was evaluated on regions of

the airway known to be affected by lymphadenopathy in paediatric pulmonary TB,

which include the trachea, LMB, RMB, RUL and BI. The best performing features

were derived from the surface point distribution model and achieved an AUC of

0.87(0.77 − 0.94) and 0.81(0.68 − 0.90) using the Trachea-LMB-RMB and RMB-

RUL-BI regions, respectively.

This method could be used to provide additional automated visualisation and

analysis for any patient undergoing a CT examination and might be applied to other

diseases affecting the airway. Bronchoscopy is currently the “gold standard” for eval-

uating airway stenosis and deformation but is an invasive procedure. CT with tech-

niques such as virtual bronchoscopy and virtual rendering, shows potential as an

alternative to bronchoscopy. However, these methods require considerable manual

interaction in the form of setting thresholds, viewing parameters, and manual as-

sessment of the airways. The method discussed in this chapter has the potential to

improve the analysis of airway shape deformation. An example application would be

the identification and highlighting of particular cases – and regions of the airway in
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those cases – that show signs of pathology. This would speed up assessment. Exten-

sions of this method would also allow grading of the pathology in each region and

identification of the lymph node of interest from the airway deformation.

The model could also be applied to 2D chest radiographs which would expand the

application to routine TB screening. A 3D model of normal and abnormal pathology

provides a detailed anatomical model that can be projected onto 2D radiographs,

which have limited airway visibility. This could be used to assist in the airway

segmentation and analysis of radiographs.
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6.7 Chapter summary

This chapter presents feature extraction and classification techniques for airway

analysis, and evaluates the algorithms performance:

• Feature extraction

– First method uses point distribution model derived features

– Second method uses cross section radius derived features

• Classification

– Classification from feature vectors

– Local 3-branch regions of the airway tree

– Obstructed branches classified separately

– Linear discriminant analysis

• Evaluation

– Evaluated on TB and non-TB paediatric patients

– Variables selected using the training set

– Leave-one-out cross validation performed on the datasets

– ROC and AUC with 95% confidence intervals

• Results

– Best results using the PDM derived features

– AUC = 0.87(0.77−0.94) for the trachea-RMB-LMB region (validation

set)

– AUC = 0.81(0.68− 0.90) for the RMB-RUL-BI region (validation set)

– Combining multiple regions improves performance
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7
Model projection and airway segmentation

in radiographs

Abstract. This chapter introduces a novel approach to the segmentation of the airways

in 2D radiographs using a 3D statistical shape model to guide the segmentation. The

silhouette of the 3D model is detected, projected onto a 2D plane and aligned to the

airways using manual landmarks. The parameters of the 3D shape model are then

optimised for each radiographic image in the test set using an energy function based on

image gradient, greyscale shape kernels and a regularisation term. The optimisation is

performed using the Nelder-Mead downhill simplex algorithm. The algorithm achieved a

6.8± 2.6 pixel error on the test set, a 25± 17% improvement on the initial rigid alignment

using 4 manually-identified landmarks.

Previous chapters develop methods in airway segmentation, registration and anal-

ysis of CT scans that are used for the detection of paediatric TB. The results show

that signs of TB can be detected by airway shape variation. These methods have only

been applied to 3D representations of the airway tree; there is potential to extend

this work to 2D imaging.
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CT scans offer far better airway visibility than radiographs, which have poor air-

way visibility – particularly because anatomical structures overlap in a 2D projection.

Therefore, it may be useful to project the 3D model to 2D to assist in the segmenta-

tion and analysis of 2D chest radiographs. In this chapter, a method is presented for

the analysis of the airways in chest radiographs using the 3D statistical shape model

that was generated in previous chapters.

Section 7.1 discusses the potential of using chest radiographs for airway analysis,

introduces previous attempts to segment the airway tree, and surveys 3D to 2D

projection methods. Section 7.2 proposes an algorithm to project and fit the model

to chest radiographs, including: airway silhouette detection (Section 7.2.1), projection

of the 3D model (Section 7.2.2), identification of image features (Section 7.2.3), and

fitting the projected model to the 2D image (Section 7.2.4). The method is evaluated

on a set of Lodox scans of paediatric patients with and without TB by comparing the

accuracy of the segmentation to manual annotations (Section 7.3). The results are

presented in Section 7.4.

7.1 Background

Due to the relatively low radiation dose and cost compared to CT scans, radiographs

can be used for used for routine imaging and population screening. Including airway

analysis in a screening tool, could improve the diagnosis of paediatric TB.

Radiographs usually have poor airway visibility but the Lodox linear slit scan-

ning radiography unit offers improved visualisation of the trachea and main bronchi

(Pitcher et al., 2008). In a study evaluating the airway visibility of the airways in

102 patients between 6 months and 13 years, the LMB and RMB could be seen and

measured in over 90% of the cases by trained clinicians (Daya et al., 2010; Sanders

et al., 2009). Sanders et al. (2009) also suggest that airway shape from radiographs

could be used to detect abnormalities. The improvements in airway visibility could

be explained by the higher kV used for the Chest AP examination and lower scatter

of the slit scanning technology (Irving et al., 2008). An additional benefit of the

linear slit scanning technology is the low dose compared to conventional radiography

(Irving et al., 2008; Maree et al., 2007).

Few previous attempts have been made to segment the airways in radiographs
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due to the poor airway visibility. Long (2008) developed a method that uses auto-

matically identified landmarks to initialise the airway segmentation. He creates an

airway template and applies affine and then piecewise warping to the template using

landmark points on the lung border and airway. An expectation maximisation based

method is then used to match the template to the airway in the radiograph. This

method was able to label on average 50% of the airway region1. This is too low to

be clinically viable but, given that this method is completely automatic, the method

demonstrates that it is possible to identify the airway region in a chest radiograph.

Tezoo and Douglas (2012) build a semi-automatic Active Shape Model (ASM)

based method to segment the airways. The ASM includes the trachea and first

bifurcation region and consists of 30 edge points built from manual annotations on

a training set of chest radiographs. The method is semi-automatic and requires the

user to input 9 landmark points on the airway edge to establish the initial alignment.

The method was evaluated on 29 test images and achieved a mean Hausdorff distance

of 18.9± 9.9 pixels.

As an extension of ASM, greyscale variation can be incorporated into the sta-

tistical model. Cootes et al. (2001) propose active appearance models (AAM) that

incorporate both shape and greyscale variation of the training set in the modes of

variation to identify new shapes. However, the airways overlap ribs, vertebrae and the

heart. These structures have greater contrast and stronger edges than the airways,

and the position of these structures relative to the airway is sensitive to small changes

in the position of the patient. Therefore, greyscale variation was not considered to

be a specific enough feature to use AAM.

The method proposed in this chapter uses a 3D statistical shape model of the

airways for the LMB, RMB and trachea – the only part of the airways visible in most

cases (Sanders et al., 2009). As discussed previously, bronchial compression from

lymphadenopathy is most common in the LMB, RMB, BI and trachea (Andronikou

et al., 2004). A 3D model is able to evaluate multiple views simultaneously, for

example AP and lateral images.

Projection of a 3D model onto 2D radiographs has not been applied to the airways

but has been used for bone structures including the rib cage (Benameur et al., 2005),

the vertebra (Benameur et al., 2003), the femur (Zheng, 2011) and hip (Zheng, 2009).

1(The percentage is calculated as TP /(TP+FP))
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Benameur et al. (2003) detect the silhouette of the 3D model, project the model onto

a 2D surface and optimise the fit of the model to edges in the image. The edges are

generated using a Canny edge detector. This model is simultaneously fitted to an AP

and lateral radiograph and a regularisation term is used to constrain the 3D model.

Groher et al. (2007) and Ruijters et al. (2009) apply 3D registration of vessels

to angiograms. Groher et al. (2007) use an initial segmentation of the vessels while

Ruijters et al. (2009) use the vesselness measure to identify vessels. Vesselness uses

the eigenvalues of the Hessian matrix to assign a probability to each pixel of belonging

to a vessel. This is effective for angiograms but for chest X-rays, overlapping bone

structures have a higher contrast and stronger edges, making vesselness ineffective

and an initial airway segmentation very challenging.

The main contribution of this chapter is the development of a method to register

a 3D statistical shape model to 2D radiographs, which has not been previously at-

tempted, to assist in the segmentation of the airways in the radiograph. The 3D shape

model along with novel 2D features are chosen to allow the airways to be detected

while overlapping structures with stronger edges and higher contrast. A model devel-

oped from CT can include a number of generations of bronchi and is more complete

than a model from radiographs where the RMB and LMB are often not completely

visible. Thus, a 3D model can be used to build a more accurate representation of the

airway tree to assist with segmentation in radiographs. Benefits of using a 3D model

over a 2D model also include the potential to improve the segmentation by fitting

multiple radiographic views simultaneously, develop a personalised 3D model from

radiographs, and use the parameters of the 3D model to detect shape pathological

shape variation (in a similar way to the method described in Chapter 6).

7.2 Method

This section outlines the 3D to 2D model projection and fitting method used for

segmentation of the airways in chest radiographs. The 3D statistical shape model

developed in Chapter 6 is used for the analysis. As described in Figure 7.1, a silhouette

of the mean model is found (Section 7.2.1) and the silhouette points are projected

onto a 2D plane and aligned to the airway region (Section 7.2.2). This 2D projection

is used to generate an energy function to measure the fit of the model to airway
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Figure 7.1: The proposed projection method to segment and model airway variation in
chest radiographs. The 3D model is projected onto processed chest radiographs. The
model parameters are then optimised with an energy function to obtain a locally optimal
fit of the 3D model. The optimisation procedure updates the 3D shape, projected shape
and energy function

features on the radiograph (Section 7.2.4). The parameters of the 3D model are then

optimised to determine the best fit of the 3D model to the 2D image. Due to the ill

constrained nature of optimising a 3D shape on a 2D projection, this optimisation

is better suited to simultaneous optimisation of both AP and lateral radiographs.

However, due to limited data, the method discussed in this chapter is only evaluated

using a single perspective (chest AP radiographs).

7.2.1 Silhouette Detection

The silhouette of an object can be used to define the edges of the surface mesh that

will be visible in a 2D projection. There are a number of methods to extract a

191



CHAPTER 7. MODEL PROJECTION AND AIRWAY SEGMENTATION

silhouette, although, for small models (meshes with less than 10 000 faces) a brute

force approach has almost the same speed as more complex methods (Hartner et al.).

A brute force approach for the detection of airway silhouette edges was implemented

in this method to output the silhouette points for projection.

The normal (N) of each face in the airway surface mesh is found using the cross

product of two edges2. Silhouette edges in a mesh are defined as edges separating a

face with a normal facing towards the viewer and a face with a normal away from the

viewer (Hartner et al.). The inner product of the face normal (N) with the viewing

direction (E) is used to detect the orientation of each face. If N · E > 0 then the

polygon faces frontwards (as shown in Figure 7.2). If N · E < 0 then the polygon

faces backwards and if N ·E = 0 then the face is orthogonal to the viewing direction.

Figure 7.2: The viewing direction (E) and outward facing normal (N) of a triangle, which
are used to define the direction of the face

Therefore the algorithm used to determine silhouette points is as follows:

• Determine face normals of the mesh

• Identify the two faces connected to each edge (f1 and f2)

• For each edge:

– Find d1 = N1 · E2 for f1 and d2 = N2 · E2 for f2

– If d1d2 ≤ 0 then the edge forms part of the set of silhouette points (S)

2The meshing procedure produces vertices of a consistent order. Therefore, the cross product of
two edges will always lead to a consistent normal direction relative to the volume.
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7.2.2 Model Projection and alignment

Once each silhouette point is identified3, the magnification of the shape (represented

by the silhouette points) needs to be calculated in order to model radiographic projec-

tion onto the detector plane. The projection of a point onto a plane can be calculated

using vector-plane intersection.

If a vector (v) from the viewpoint (l0) to a silhouette point in direction l is

written as v = l0+dl, then d at the point where the vector intersects a plane

of interest can be shown to be:

d =
(p0 − l0) · n

l · n (7.1)

where p0 is a point on the plane and n is the normal of the plane.

Therefore, the projection of each silhouette vertex, from a viewpoint to a defined

plane, can be calculated, to simulate radiographic projection of the 3D model onto the

detector plane. Projection of both silhouette vertices and skeleton points is performed.

Figure 7.3 shows the projection of the silhouette points onto a plane.

In our case we are simulating the projection of the airways onto a radiograph

using the Lodox Statscan linear slit scanning radiography unit. Lodox uses a thin fan

beam scanned across the patient and, therefore, the projected image is not magnified

in the scanning direction. To take this into account, the z-position of each point is

kept constant. A rough approximation of the Lodox Statscan dimensions was used

by defining the source viewpoint as:

• X-ray source “view point” (l0)=[1000mm, 0mm, 0mm]

• Detector plane (p0)=[-100mm, 0mm, 0mm] with normal (n) [-1,0,0]

• Airway model centred at [0mm, 0mm, 0mm]

Once the silhouette points have been projected onto the detector plane, this al-

gorithm requires some manual interaction to align the model to the airways in the

3each silhouette edge is comprised of a start and end silhouette point.
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image. Procrustes analysis (discussed in section 6.2.1.1) was used to align the model

with 4 manually annotated landmark points. Figure 7.4 shows the alignment of the

4 bifurcation points of the projected 3D model with the 4 manual annotations on the

image. The optimal scaling, translation and rotation, calculated from the procrustes

analysis of the landmark points, are used to transform the silhouette and skeleton

points.

Figure 7.3: Airway silhouette detection and projection. Black points show the detected
silhouette vertices on the trachea, LMB and RMB and the projected points onto a surface.
The locations of the skeleton (blue points) and the branch start and end points (green
points) are also projected.
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Figure 7.4: Procrustes analysis of the 4 manual landmarks of the image (defining the branch
start and end positions) with the projected branch landmark points. Green dots show the
manual landmarks on the airway of the image and red squares show the aligned landmarks
from the 3D model

7.2.3 Image Features

An energy function derived from image features was used to fit the projected shape

model to the airway region of the radiograph.

7.2.3.1 Preprocessing of the radiograph

There is large variation in the image intensity of the airway due to overlap with

the ribs, vertebra and pulmonary structures. In order to reduce this variation, local

normalisation was applied to the image, which has been used previously for airway

enhancement (Long, 2008)

Local normalisation can be described by:

Iln =
I −G(I)

σf
(7.2)

where σf =
√

G((I −G(I))2) is the estimate of the standard deviation at each pixel
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and G(I) is the Gaussian blur function4 applied to image I(x,y). Figure 7.5 demon-

strates the effect of local normalisation on a chest radiograph.
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(a) Chest radiograph (b) Chest radiograph after local normalisation

Figure 7.5: Improvement in airway visibility after the local normalisation filter is applied
to the image

7.2.3.2 Gradient

Vesselness is a common method for detecting tubular structures in images and Canny

edge detection is a common technique for edge detection. Both these methods were

attempted but failed to provide suitable airway features because of overlapping struc-

tures with greater intensity and stronger edges. Instead, the smoothed gradient of

the image was used as one set of image features. The Sobel filter was used to extract

the gradient and a Gaussian convolution of σ = 5 was used to smooth the gradient.

The gradient derived energy function was calculated as the sum of the gradient

at edge silhouette point:

Egrad = −
p
∑

i=1

|∇I(si)| (7.3)

4Using the training set, σ = 20 pixels was used (approximately 80 % of the maximum airway
radius). However, similar results on the test set were obtained for the range σ = 10 pixels to σ = 30
pixels.
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where si are the p projected silhouette points on image I.

7.2.3.3 Greyscale

Edges detectors provide useful features for airway segmentation but if used alone will

not always be effective when there are additional strong edges. A second charac-

teristic of the airway is that it appears as a shadow over higher contrast structures.

Therefore, while the image is often darker or brighter surrounding the airway, any

structure overlapped by the airway should appear darker in the airway. Comparing

the greyscale inside and outside the airway, can be used to optimise the fit. The

outward direction of each silhouette point is defined as the vector from the closest

skeleton point to the silhouette point, as shown in Figure 7.6.

(a) The outward direction of each
silhouette point. The blue points
represent the unsmoothed centre-
line, the green points represent
the silhouette points of the first
three branches, and the arrows
represent the outward pointing
vectors found from the centreline.

(b) Greyscale comparison inside
and outside the airway. The mean
greyscale value is found for ci,1
and ci,0 for each si.

Figure 7.6: Comparing greyscale of kernels inside and outside the airway region for each
silhouette point

Once the orientation of each silhouette point is found then the mean greyscale
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value of kernels just inside and just outside the airway can be compared. The ori-

entation of the line connecting the two circular kernels is always perpendicular to

the current airway wall. This method is related to a method used by Aylward et al.

(2003) to estimate the cross section of a tubular object. However, because the re-

gion of interest is the airway projection and not a tube cross section, the kernels are

positioned using the airway shape model instead of a defined circle.

The energy function was defined as:

Egrey =

p
∑

i=1

ci,1 − ci,0
ci,0

(7.4)

where ci,0 is the mean greyscale of the sampled circle outside the airway and ci,1 is

the mean greyscale of the sampled circle inside the airway at silhouette point si.

7.2.4 Optimisation

The projected silhouette points along with the energy function are used to optimise

the fit of the 3D shape model to the airway regions in the radiograph. From Equation

A.6 in Chapter 6, a shape can be described by variation along each eigenvector from

the mean model:

x = x̄+ Φb (7.5)

where x̄ is a n× 3 array of vertex positions of the mean model that are deformed by

m eigenvectors Φ = (φ1|φ2|...|φm) with weights b = (b1, ..., bm). Therefore, b can be

used to choose a suitable model that is the best fit to a single airway case.

Eedge and Egrey are used to determine the optimal b. A total energy (E) was

created from a weighted combination of the energy functions:

E = αeEedge + αgEgrey + rEreg (7.6)

where αe and αg are the weights. An additional regularisation term (Ereg) was

included with weight (r). Regularisation is required because the 3D model is poorly

constrained by optimising on a 2D projection. Ereg is chosen as:
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Ereg =
m
∑

j=1

|bj|
λj

(7.7)

where bj is the weighting factor of each eigenvector and λj is the eigenvalue of the jth

eigenvector – equivalent to the variance of each mode within the dataset. This term

penalises variation of the model away from the mean model, while penalising modes

with larger variation in the dataset less than modes with smaller variation.

The local minimum of E was used to find the optimal b, and therefore the best

segmentation, for each chest radiograph. Most optimisation methods require a con-

tinuous function. We are working in discrete image space and so linear interpolation

was used to determine the features used in Eedge and Egrey at any required value for

si.

An optimisation algorithm was used to minimise E. At each step in the optimi-

sation: b is updated, the airway shape projected onto the image and E recalculated

(shown in Figure 7.1 and Figure 7.7). Nelder-Mead downhill simplex optimisation

method (Press et al., 2002) was used to find the local minimum of E from the initial

mean model. A simplex is an object consisting of m+1 points and connecting edges

in m dimensional space (for the optimisation of a function with m parameters). After

initialisation, the method iteratively moves the point, in the simplex, with the largest

energy through the opposite face to a lower energy until a local minimum is reached.

The simplex expands and contracts depending on the topology of the energy function.

The downhill simplex method uses only function evaluations and does not require the

function gradient to be calculated. It has a higher computational cost than other

methods but is useful for prototyping (Press et al., 2002). Figure 7.3 shows initial

mean model and Figure 7.8 shows the 3D model after optimisation to case 6.

7.3 Evaluation

The method was evaluated on a dataset of chest radiographs and the optimal fit was

compared to manual annotations.
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Figure 7.7: The optimisation method calculates a new b at each step. A new 3D model
is generated for this b and projected onto the surface to recalculate E. These steps are
repeated until a local mininum is reached.

Figure 7.8: Case 6 from the training set as an example of the optimised 3D shape and projec-
tion. The optimisation is initialised with the mean model (b=[0,0,0,0,0,0,0,0,0,0,0]). Final
b= [0.0011566, -0.06434384, 0.09403463, -0.04700209, 0.0121405, 0.05619736, -0.00784436,
-0.02942235, 0.04281598, 0.04363968, -0.01013572] after optimisation.
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7.3.1 Dataset

A 41 patient chest X-ray dataset was obtained from Red Cross Children’s Hospital,

South Africa. The images were acquired using the Lodox Statscan linear slit scanning

radiography unit. The dataset contained patients that tested positive for TB from

culture and patients without TB. The patient age ranged from 3 months to 60 months.

The dataset was divided into a 10 patient training set (5 TB and 5 non-TB) and a 31

patient test set (11 TB and 20 non-TB). A small training set was used because the

model is derived from a large set of CT images (see Chapter 6), and the 10 radiograph

training set is only required to determine best weights (αe, αg and r) for the energy

function.

7.3.2 Manual annotations

Manually drawn airway outlines were used to evaluate the method. As part of this

study, a tool was created to allow a user to draw outlines by inputting a series of

points. These line segments were then stored for each airway. Due to the amount of

time required to perform each annotation, the author of this thesis created manual

airway outlines for the evaluation of this algorithm. In future, a trained radiologist

will be used to provide a second opinion. An example manual segmentation is shown

in figure 7.9. The entire test set and the test set with manual outlines are shown, later

in this chapter, in Figures 7.12 and 7.13. The method requires 4 manual alignment

points, which were also input using the tool.

7.3.3 Comparison

To evaluate the performance of the method, the optimised silhouette points were

compared to the manual outlines of each test case. The shortest distance between

each silhouette point and the manual outline was found by evaluating each segment

of a manual outline.
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Figure 7.9: The manually drawn outline of an example airway

The distance between a point and a line segment can be found by the or-

thogonal intersection of a vector from point z with the line. A point p on a

line segment between a and b can be defined as:

p = a+ u(b− a) (7.8)

The shortest distance between z and p is where (z − p) is orthogonal to

(b− a), that is (z− p) · (b− a) = 0. Therefore,

u =
(z− a) · (b− a)

||b− a||2 (7.9)

Allowing use to obtain the closest point (p) from Equation 7.8. If u<0 or

u>1 then the closest point is a or b, respectively (Weisstein, a).
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The distance between each silhouette point and the manual outline could be found

by evaluating the closest distance to each line segment in the manual annotation and

then choosing the minimum distance. The mean distance of all the silhouette points

in each airway was used for evaluation.

7.4 Results

7.4.1 Airway segmentation

The 3D airway shape model was derived from CT scans as discussed in Chapter 6.

The 10 training cases were used to find the optimal parameters for E (Equation 7.6).

A grid search was performed to determine the weighting of edge energy (αedge) and

greyscale energy (αgrey) versus the regularisation parameter (r).

Table 7.1 shows mean error (pixels) for the training cases. This optimisation

shows that there is a trend of poorer performance when αgrey tends to 0 or the r is

large. Choosing the optimal value (αe=0.4, αg=0.6 and r=0.003) the performance of

the segmentation algorithm was evaluated on the test set.

r=0.001 r=0.003 r=0.005 r=0.01 r=0.03 r=0.05 r=0.1 r=0.2 r=0.3
αe=1.0, αg=0.0 7.734 7.363 7.502 7.307 7.659 7.908 8.073 8.24 8.276
αe=0.8, αg=0.2 6.275 5.556 5.793 5.417 6.068 6.796 7.443 7.889 8.238
αe=0.6, αg=0.4 6.022 5.864 5.467 5.365 5.795 6.065 6.835 7.49 7.672
αe=0.4, αg=0.6 5.474 5.353 5.632 5.655 5.43 5.55 6.279 7.366 7.506
αe=0.2, αg=0.8 6.018 5.842 5.72 5.982 5.556 5.690 6.030 6.854 7.422
αe=0.0, αg=1.0 5.869 6.227 6.134 5.712 5.897 5.709 5.762 6.716 7.355

Table 7.1: Selecting the optimisation parameters αe, αg and r using the training set. Lowest
mean error was found at αe=0.4, αg=0.6 and r=0.003.

The mean distance from the silhouette points to the manual airway outline was

calculated after the initial alignment (initial error) and after the optimisation of the

statistical shape model (final error). The results for each case of the training set are

shown in Figure 7.2 and the results for the test set are shown in Figure 7.3.

The mean error for all training cases was 5.4±1.9 (mean and standard deviation),

a 35± 18 % improvement on the original fit. The test set achieved a 6.8± 2.6 pixel

error, a 25± 17 % improvement on the original fit. The method shows improvement

for all cases of the test set except case 36. However, the method does not offer much
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Case Initial error Final error Percentage change
(pixels) (pixels) (%)

1. 6.36 4.46 -30.
2. 9.71 3.43 -65.
3. 11.05 5.61 -49.
4. 7.03 4.86 -31.
5. 5.58 2.48 -56.
6. 6.76 4.20 -38.
7. 9.39 6.98 -26.
8. 10.48 6.06 -42.
9. 9.32 9.47 2.
10. 7.35 5.96 -19.

Table 7.2: The mean error after alignment (initial error) and SSM optimisation (final
error). Percentage change shows the change after SSM optimisation

improvement on 4 of the cases: 20, 26, 30 and 31.

Figure 7.10 shows case 11 from the test set – an example of a good fit. The initial

error of 6.67 pixels is improved to 3.10 pixels. Figure 7.11 shows a good fit except for

failure on the one wall of the trachea. Figure 7.12 shows all filtered airway regions in

the test dataset and Figure 7.13 shows the fit to these cases.

The robustness of the algorithm to variability of the landmark points was tested

by assigning a second set of landmark points to the bifurcation regions in the training

images. This tested the impact of intra-observer variability on the accuracy of land-

mark assignment. The mean error for all training cases was 5.4±1.5 pixels (mean and

standard deviation), a 27 ± 21 % improvement on the rigid registration of 7.5 ± 1.4

pixels. This compared to a fit using the previous landmarks of 5.4± 1.9 pixels from a

rigid registration of 8.3±1.8 pixels. The mean absolute difference between individual

cases of the new and old landmarks was 2.0 pixels. This shows that the algorithm

is fairly robust to intra-observer variability in the selecting of the landmark points.

However, the second set of landmark points achieved a better initial fit, leading to a

smaller improvement in the final fit.

The intra-observer variability in the drawing of the manual airway outline was

evaluated by redrawing the outline for the training set of 10 images. The segmen-

tation was then compared to the new outline to get an indication of the variability.

The mean error for all training cases, using the new manual outlines as reference,

was 6.1 ± 1.4 pixels (mean and standard deviation), a 24 ± 18 % improvement on
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Case Initial error Final error Percentage change
(pixels) (pixels) (%)

11. 6.67 3.10 -53.
12. 5.08 4.14 -19.
13. 7.91 6.18 -22.
14. 12.55 7.70 -39.
15. 7.57 4.26 -44.
16. 6.96 4.50 -35.
17. 3.90 2.83 -27.
18. 5.79 7.90 36.
19. 5.15 3.58 -31.
20. 7.16 6.55 -9.
21. 10.15 6.47 -36.
22. 6.75 4.18 -38.
23. 12.63 9.71 -23.
24. 9.76 5.72 -41.
25. 6.52 4.25 -35.
26. 13.84 13.02 -6.
27. 5.33 3.54 -34.
28. 10.95 8.81 -20.
29. 8.20 6.17 -25.
30. 7.13 6.82 -4.
31. 12.23 11.18 -9.
32. 8.66 6.44 -26.
33. 8.68 5.65 -35.
34. 16.50 12.67 -23.
35. 11.10 7.81 -30.
36. 7.77 8.08 4.
37. 10.41 6.99 -33.
38. 12.25 9.16 -25.
39. 9.88 7.62 -23.
40. 9.80 7.44 -24.
41. 13.26 7.96 -40.

Table 7.3: The mean error after alignment (initial error) and SSM optimisation (final
error). Percentage change shows the change after SSM optimisation
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(b) Optimisation of the shape model to
fit the airway
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(c) Error of the mean model compared
to the manual annotation. Mean error is
6.67 pixels

0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

(d) Error of the optimised shape model.
Mean error is 3.10 pixels

Figure 7.10: Case 11 showing fitting of the aligned shape model to the airway. a) and b)
show the silhouette points before and after the shape model fit overlayed on the gradient
image. c) and d) show the same fit but with the manual annotation overlayed. Arrows
indicate the direction to the closest point on the manual annotation to measure the error.
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(c) Error of the mean model compared
to the manual annotation. Mean error is
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(d) Error of the optimised shape model.
Mean error is 5.65 pixels

Figure 7.11: Case 33 showing fitting of the aligned shape model to the airway. a) and b)
show the silhouette points before and after the shape model fit overlayed on the gradient
image. c) and d) show the same fit but with the manual annotation overlayed. Arrows
indicate the direction to the closest point on the manual annotation to measure the error.
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Figure 7.12: Airway region for all test images after local normalisation
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Figure 7.13: Airway region with segmentation outline (green) and manual annotations (red)
for all test images
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the rigid registration of 8.2 ± 1.8 pixels. The error of the segmentation algorithm

when compared to the previous manual outlines was 5.4 ± 1.9 pixels from a rigid

registration of 8.3 ± 1.8 pixels. This shows that the intra-observer variability when

performing manual reference outlines does not have a considerable impact on the

results. However, further evaluation using an experienced clinician is required.

As discussed earlier, there are few airway segmentation methods for radiographs.

Tezoo and Douglas (2012) build a active shape model of the trachea and bifurca-

tion region from annotations of 2D chest X-rays. To compare results, the maximum

distance between the model and the manual annotations was also calculated for our

method. The mean of this distance for all airways in the test set was 23.7 ± 9.9

pixels5. The Hausdorff distance could not be calculated because the manual annota-

tions contain all visible airways in each image. However, maximum distance can be

considered almost equivalent to the Hausdorff distance if the manual annotation does

not have large concavities. Tezoo and Douglas (2012) achieved a mean Hausdorff

distance of 18.9±9.9 pixels – a comparable value given the standard deviation. They

use 9 landmarks points on the surface of the airway to align the model, while we use

4 landmarks points at branch bifurcation. The additional landmark points may also

mean that the initial alignment is closer to the true airway location. Importantly,

they only consider the trachea and bifurcation region and not the whole RMB and

LMB included in our model. The RMB and LMB plays a more important role in

detection of tuberculosis from airway deformation than the trachea.

7.5 Discussion

Segmentation of the airways in chest radiographs is a very challenging topic because of

the poorly defined borders and overlapping high contrast bone and heart structures.

This chapter applies 3D to 2D shape model projection to segment the airways in

radiographs, for the first time, using the 3D statistical shape model that has been

developed in previous chapters. Novel airway airway shape based features are applied

to the image to assist with the alignment.

The method requires 4 manual landmarks for the initial similarity transformation

5From the training set, a higher regularisation weight r = 0.03 was identified to obtain lower
maximum distances
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of the model (rigid transformation with scaling). The statistical shape model improves

on this initial alignment by 25± 17 % to a mean distance between the model and the

manual outline of 6.8± 2.6 pixels.

This initial exploration of the 3D to 2D airway segmentation problem only used

AP chest radiographs to fit the model (the available data). Including a lateral view is

expected to further constrain the optimisation while requiring a weaker regularisation

term and, therefore, improve the segmentation. This method can take additional

views with minimal modification.

The segmentation procedure was compared to a 2D ASM segmentation method.

Our method achieves a similar error rate but can segment a larger region of the airway

including the LMB and RMB. This is important for detection of lymphadenopathy.

The segmentation method discussed in this chapter takes advantage of a statistical

shape model created from well defined 3D airways in CTs. There are a number of

advantages to using a projected 3D shape model over a shape model derived from

2D landmarks in radiographs. The airways are much better defined in CT and,

therefore, there is considerably less error in the segmentations used for training –

producing a more accurate model. Regions of the airway may not be visible in chest

radiographs, which would have to be ignored in a 2D model. Another advantage of

the 3D model is that the segmentation can be further improved by adding additional

radiographic views of the airways. This method also has the ability to construct 3D

personalised airway models, which could be used by clinicians to identify stenosis,

without having to expose paediatric patients to high radiation doses associated with

CT. A disadvantage of this method over 2D shapes models is that the complexity of

the algorithm is considerably increased.

7.6 Conclusion

This chapter introduces a novel approach to the segmentation of the airways in 2D

radiographs using a 3D statistical shape model that was developed in previous chap-

ters. The silhouette of the 3D model is detected and projected onto a 2D plane using

the specifications of a X-ray machine to define the projection parameters. The pa-

rameters of the 3D shape model are then optimised for each radiograpic image in the

test set using an energy function based on image gradient, greyscale shape kernels
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and a regularisation term. The optimisation is performed using the Nelder-Mead

downhill simplex algorithm and the shape model is re-projected at each step of the

optimisation to recalculate the energy function. The algorithm achieved a 6.8 ± 2.6

pixel error on the test set, a 25 ± 17% improvement on the initial rigid alignment

using 4 manually-identified landmarks.

7.6.1 Future work

As discussed in the previous chapter, the model parameters can be used to classify

pathological shape variation in paediatric TB cases. Classification of the airway shape

has the potential to be extended to chest radiographs, but may require the lateral view

to be included to suitably constrain the 3D model. The model was able to identify

the airway in most cases, but did not succeed in improving the initial alignment for

5 of the 30 cases, and further improvements may be required before this method can

be used for disease detection
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8
Conclusions

8.1 Summary

This thesis presented methods to segment the airways, analyse the structure, detect

obstructions, and classify airway pathology, from CT scans. The model is also used

to segment the airways in radiographs.

Chapter 1 outlined the clinical motivation behind this thesis. It includes an

introduction to paediatric pulmonary tuberculosis and the effect of lymphadenopa-

thy on airway deformation. This motivates the development of a method to detect

airway shape variation, which would assist in the detection of paediatric tuberculosis.

While this method focuses on paediatric tuberculosis, airway shape analysis has wider

applications.

In order to analyse airway shape changes in CT examinations, an airway seg-

mentation method is needed. In Chapter 2 a morphological airway segmentation

method was developed. The lung fields were used to initialise a seed point in the

trachea, and from this seed point, the trachea, LMB and RMB were segmented us-
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ing a simple threshold and region growing method. In each axial slice, compactness

and connectivity were used to monitor segmentation leaks and airway bifurcation,

respectively. Morphological filtering using greyscale closing and reconstruction was

applied to CT slices in the axial, coronal and sagittal directions, using a range of

circular kernels, to enhance cross sections of smaller bronchi. A threshold was ap-

plied to extract potential airway locations for each of these circular kernels. The

entire airway tree was then segmented by applying a region growing method from the

initial segmentation to regions enhanced by the filter. A leak removal step was used

to evaluate changes in the cross section of each bronchi and exclude false regions.

This method was developed for paediatric airway segmentation, but given the lack

of a “gold standard” segmentation, was evaluated as part of the EXACT’09 airway

segmentation challenge on a 20 patient adult dataset. The algorithm achieved a fair

result compared to other state-of-the-art airway segmentation algorithms. The mean

number of branches detected was 43.5% and false positive rate (FPR) was 1.27%. Out

of the 15 teams, 4 teams had a lower FPR (better) and 10 teams had a higher FPR

(worse). At this FPR point, 9 teams had a higher sensitivity (better) and 5 teams

had a lower sensitivity (worse). The algorithm with the highest sensitivity detected

76.5% of the airway with a FPR of 15.6%, demonstrating that there is potential to

improve airway segmentation methods.

The next step in analysis, after segmentation of the airways, was to detect the

branching structure of the airways and label each branch. In Chapter 3 an exist-

ing airway skeletonisation method was used to extract the branching centreline of

the airway tree. A multi-threshold pruning method was then used to remove false

branches. The branching structure was used to label the surface mesh of each branch

and identify bronchi.

Once the structure of each airway had been identified from the airway segmen-

tation and centreline detection steps, it was necessary to register the surface mesh

of each airway to compare variation between airway trees. Chapter 4 introduced a

method to register regions of the airway tree in a dataset of CT scans. Landmarks

were projected onto the airway surface, and used to guide the thin-plate-spline warp

of a template mesh onto each airway surface. The landmarks were generated by,

firstly, detecting the start and end point of the smoothed centreline of each branch,

then equidistantly sampling the centreline between these points, and placing points
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on the surface of the airways using a reference frame derived from the coordinates of

the centreline. A template mesh could then be aligned to each three-branch airway

region using a thin-plate-spline warp and surface landmarks. A local matching algo-

rithm was then used to align individual vertices of the template to each case while

preserving the structure of the mesh. A number of cases had branch stenosis and it

was found to be beneficial to add an inflation/deflation term, as well as a closest point

and mesh preservation terms, to perform local alignment. The final alignment was

evaluated in terms of the accuracy of the fit and the preservation of the mesh faces.

The optimal method was able to register a template mesh to the airway dataset with

a mean error of 2.1 ± 0.9%. However, single voxel errors are likely to be caused by

the re-voxelisation method used in the evaluation and the larger polygonal face size

of the simplified surface mesh. Errors larger than 1 voxel (i.e. errors that could not

be explained by the re-voxelisation procedure) contributed to 0.22±0.49%. The local

normalisation performed better for airway registration than alternate methods used

for other applications, both in terms of registration accuracy and mesh quality.

Due to severe pathology, a number of cases have main bronchi that appeared

completely obstructed in the CT scan. These cases produce incomplete airway seg-

mentations, and for visualisation and analysis, it is important to segment beyond

the obstructions. In Chapter 5, we used both the airway structure defined by the

labelled skeleton, and a statistical shape model of each branch of interest, trained on

normal branches and missing child bronchi, to detect missing bronchi. The direction

of the branch and point of obstruction were then used to search for additional airway

regions. The method was evaluated on a limited number of cases with obstruction

but showed promising initial results. This method automatically identified 24 of the

26 obstructed branches. Two branches could not be classified because of a lack of

data. 18 of 19 disconnected airway regions were segmented.

Chapter 6 builds on the previous chapters to evaluate paediatric airway stenosis

and deformation caused by tuberculosis. A statistical shape model for the Trachea-

LMB-RMB and RMB-RUL-BI regions of the airway tree was constructed from a

dataset of CTs with and without tuberculosis. The modes of variation from principal

component analysis were used as features for classification. This method was com-

pared to features derived from measurements of the branch diameter. These meth-

ods were evaluated on a validation set of patients from Tygerberg Hospital, South
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Africa. The airway analysis method was able to accurately distinguish between TB

and non-TB airways by examining regions of the airway likely to be affected by

lymphadenopathy, resulting in an AUC of 0.87(0.77 − 0.94) and 0.81(0.68 − 0.90)

for the Trachea-LMB-RMB and RMB-RUL-BI regions, respectively. This illustrated

the potential of automatic assessment of airway shape in the detection of paedi-

atric pulmonary tuberculosis. Combining the classification of both regions yielded

the best results. These PDM derived features performed better than two versions

of radius based features. Radius features 1 had an AUC of 0.72(0.59 − 0.83) and

0.59(0.46 − 0.73). Radius 2 had an AUC of 0.83(0.73 − 0.91) and 0.75(0.64 − 0.85).

The PDM derived features showed more promise and this was probably because of

the ability to represent more complex variation in feature space.

This airway assessment method was applied to radiographs. However, segmenta-

tion of the airways in radiographs is a challenging task because of poor visibility and

overlapping bone and heart structures. In Chapter 7 we investigated the use of a

3D statistical shape model of the airways in order to assist in the segmentation of the

2D airway region. Silhouette vertices of the mean airway model were detected and

projected onto the 2D radiograph. This projection was initially aligned to the airway

using four manual annotations. An energy function was created from the filtered

image gradient and greyscale derived features, and used, along with a regularisation

term, to fit the 3D shape model to the 2D radiograph. The statistical shape model

improved upon this initial alignment by 25± 17 %. The mean distance between the

model and the manual outline was 6.8 ± 2.6 pixels. The results showed that this

method can be used to segment the trachea and main bronchi but could be improved

by incorporating additional radiographic views to further constrain the optimisation.

As a research student at UCL, I was given this project to initiate and develop.

Thus, I have developed all aspects of this detection system from scratch with the

support of my supervisors.

8.2 General remarks and future directions

This thesis presents novel methods for airway analysis and detection of tuberculosis,

and has been evaluated on a dataset of paediatric cases with and without tuberculosis.

These methods also have potential to be applied to other airway or shape analysis
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problems. This section highlights some other applications and future directions of

this research.

Methods developed in this thesis could be applied to other diseases affecting the

airways, such as congenital cardiac disease, which can cause airway obstruction by

compression from enlarged cardiovascular structures. When there is airway involve-

ment in congenital cardiac disease, it is necessary to investigate the cause and severity

of involvement. There are also a range of diseases affecting the airways primarily in

adults, which include: post-intubation stenosis, amyloidosis, relapsing polychondritis,

rhinoscleroma and sarcoidosis. Signs of these diseases could all be detected using this

method if training CT datasets of the disease could be acquired. There is also poten-

tial for this method to distinguish between different types of pathology by detecting

differences in the type of airway deformation, and hence the variation in the shape

model, associated with each disease. These methods may also be applied to blood

vessels and other tubular structures.

This study investigates the effects of tuberculosis on the airway in paediatric

patients and it would be useful to extend the method to investigate other causes

of lymphadenopathy. Other causes of lymphadenopathy in paediatric patients are

relatively uncommon in TB endemic areas such as South Africa. Therefore, as the

diagnosis of paediatric TB often relies on the identification of lymphadenopathy and

airway deformation, our aim has been to provide an automated approach to this

detection, which would be used in conjunction with other clinical tests to exclude

other causes of lymphadenopathy. In a future study it would be interesting to use

this method to compare airway stenosis from lymphadenopathy in TB patients to

other causes of lymphadenopathy.

The 3D shape model that has been developed for the detection of abnormal airway

shape variation was built from a dataset of CT volumes. These volumes provide

information about the airway shape at roughly a single point in time. As discussed

earlier, the airway changes shape during breathing and movement, and therefore, to

improve the specificity of the model, it would be useful to develop individual patient

models of the normal shape variability during breathing. There is potential to capture

this variability in future using dynamic CT, where a series of volumes are acquired

over a period of time. Boiselle et al. (2006) and Baroni et al. (2005) use dynamic

CT during breathing cycles or coughing to detect tracheomalacia – characterised by
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flaccidity of the airway membranes. However, this method is limited to small volumes

by the size of the MDCT detector.

This study uses the 3D airway shape model to segment the airways in 2D radio-

graphs. It would be useful to also detect signs of pathology in these segmentations,

because providing automated analysis of the airway shape in radiographs opens up

the possibility for this method to be incorporated into screening tools. The 2D seg-

mentation method shows potential but may require improved accuracy for analysis of

pathology. A key problem is poor airway visibility in chest radiographs. Performance

could be improved by using radiographs with optimised technique factors for better

airway visibility, or using additional radiographic views to better constrain the 3D

model and improve the fit to 2D projections.

In this thesis, the accuracy of distinguishing TB from non-TB cases is evaluated

in regions of the airway by modelling airway stenosis and deformation caused by

lymphadenopathy. Given a dataset of CT scans with annotated lymphadenopathy

locations, the same model could be trained to identify the location of the offending

lymph node. This could be used to provide annotations of lymphadenopathy to the

clinician.
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Statistical and classification methods

This appendix outlines the generalised procrustes methods (GPA), principal compo-

nent analysis (PCA) and classification methods used in thesis.

A.1 Generalised procrustes analysis

Generalised procrustes analysis (GPA) can be used to align sets of corresponding

landmark points by similarity transform (scaling, translation and rotation) (Cootes

and Taylor, 2004). Each set of n points is made up of the vertices of an airway in 3D

space i.e. x = [(x1, y1, z1), ..., (xn, yn, zn)] and GPA alignment minimises the distance

between these landmark points. GPA was incorporated into our method using the

following steps:

1. Translate the centroid of each object to the origin

2. Scale each object

3. Choose an example shape as the initial mean
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4. Align all objects to mean

5. Recalculate the mean from the aligned shapes

6. Align mean airway to the initial mean

7. Calculate difference between current and previous mean

8. Repeat from (4) if the difference is greater than a defined threshold

The three transforms in this algorithm are described below:

Centroid and translation: The centroid (C(x)) can be defined as the mean of

all landmark points representing the object. Initially, the centroid is subtracted from

the position of each point to translate the object to the origin.

C(x) = (x̃, ỹ, z̃) =
n
∑

j=1

(xj, yj, zj)

n
(A.1)

Scale: The 2-norm S(x) is used to define the size of an object. Each object is

scaled by S(x) to normalise the dataset.

S(x) =

√

√

√

√

n
∑

j=1

[

(xj − x̃)2 + (yj − ỹ)2 + (zj − z̃)2
]

(A.2)

where (x̃, ỹ, z̃) is the centroid.

Rotation: The optimal rotation matrix between two sets of landmark points

(from two shapes) can be found using singular value decomposition (SVD). The SVD

of a matrix A has the form A = UDV T . If x and y are two sets of landmark points,

then by applying SVD to xTy, the optimal rotation matrix can be shown to be V UT

(Stegmann and Gomez, 2002).

It is necessary to align each new mean airway shape to the initial mean (Step

6) otherwise the optimisation becomes ill-conditioned and will not converge (Cootes

et al., 1995).
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A.2 Principal component analysis

Principal component analysis (PCA) is an integral part of developing a point distri-

bution model (PDM). PCA applies a linear transform that projects the vertices onto

an uncorrelated space and can be used to extract relevant features (Cootes et al.,

1995). PCA modes are ordered by the variance and, therefore, by selecting a subset

of the modes with the most variance, each shape can be represented by a feature

vector of lower dimensionality than the input feature vector.

As input into PCA, each object is represented as a 3n dimensional stacked vector

of mesh vertices where n is the number of vertices in the mesh; for the Trachea-

RMB-LMB regions n ≈ 1500. Therefore, the GPA aligned 3D landmark points

of the object x = [(x1, y1, z1)...(xn, yn, zn)] are now represented as a single vector

xi = (x1, y1, z1, ..., xn, yn, zn)
T for object i.

PCA is computed from the covariance matrix:

∑

= XXT (A.3)

Each column of X is the mean subtracted 3n vector of each object

X = (x1 − x̄|x2 − x̄|...|xn − x̄) (A.4)

where x̄ is the mean vector (i.e. the mean shape) in the dataset. It can be shown that

the eigenvectors (Φ) of the covariance matrix can be used to project an airway (x)

into uncorrelated space, where the dimensions of the uncorrelated space are defined

by the orthogonal eigenvectors. This projection is:

b = ΦT (x− x̄) (A.5)

where the projection matrix (ΦT ) is the transpose of the eigenvector matrix (Φ)

and b is the representation of the airway in the new space. Therefore, an airway can

be represented in terms of the mean shape and a displacement along each principal

component by b:

x ≈ x̄+ Φb (A.6)

221



APPENDIX A. STATISTICAL AND CLASSIFICATION METHODS

Of particular interest is that PCA results in an ordered set of eigenvectors, where

the contribution of the variance of each eigenvector (φi) is represented by the eigen-

values (λi). A shape can, therefore, be approximated by a set of m eigenvectors

Φ = (φ1|φ2|...|φm) and b = (b1, ..., bm). This means that a dense surface mesh model

of a shape can be reduced to a much shorter feature vector represented in terms of

the principal components of shape variation.

A common way of choosing the number of principal components (eigenvectors)

that will represent the shapes is based on the amount of variance they represent.

Typical choices range from 90% to 99.5% of the variance (van Ginneken et al., 2002a).

The variance represented by the first m eigenvectors can be calculated from the sum

of the first m eigenvalues over the sum of all 3n eigenvalues:

f =
m
∑

i=1

λi

/

3n
∑

i=1

λi (A.7)

Therefore, each object can be represented by a vector b of lengthm. These vectors

represent the object shape (with an accuracy of up to the chosen variance f) and can

be used to distinguish and classify airway shapes.

A.3 Classification methods

Two classification algorithms were used in this work: Linear discriminant analysis

(LDA) and support vector machines (SVM) . LDA is a widely used probabilistic

classifier. This method uses Bayes’ theorem to determine the posterior probability

P (G = k|X = x) of a class label G = k given X = x. The class density, for a given

x, is modelled by a multi-variate Gaussian:

fk(x) =
1

(2π)p/2|
∑

k |1/2
e−

1

2
(x−µk)

T
∑

−1

k
(x−µk) (A.8)

where
∑

k is the covariance matrix. In LDA, the covariance is assumed to be the same

for all classes. This simplifies the method and results in linear decision boundaries.
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LDA benefits from its simplicity, low computational cost and low variance, and even

with its simplicity it is still one of the top performing classification algorithms (Hastie

et al., 2011).

SVM is a powerful discriminative approach, which finds a decision boundary that

maximises the distance from the closest data point from any class. For a two class

problem, the linear case of a discriminative function can be defined as (Bishop, 2006):

f(x) = wTx+ w0 (A.9)

where x is a feature vector and w is the weighting vector. A vector x is input and

a threshold of the output f(x) defines which class label the sample is given. These

weighting factors are chosen during training of the SVM in order to maximise the

margin between the decision boundary and samples (in the case of separable classes).

The definition is extended for overlapping classes. This turns into a minimisation

problem that can be solved by Lagrangian multipliers (Bishop, 2006). This linear

method can be made nonlinear using the kernel trick – replacing x with a nonlinear

combination of features φ(x).

Various classifiers can often yield similar results on general data and feature ex-

traction often plays a more important role. As an example, Hammond et al. (2004)

developed a method to detect facial morphology and achieved very similar results

using neural networks, support vector machines and logistic regression.
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Structure analysis: additional examples

and evaluation

There is considerable variability in the pathology present in both the non-TB and

TB training sets. In the most extreme cases this leads to complete obstruction of

bronchi. We require our method to be robust to these variations – in comparison to

typical skeletonisation methods that appear to use healthy airways (Mori et al., 2000;

Palágyi et al., 2006).

The pruning method (discussed in Section 3.2.4) applies an end branch removal

algorithm at multiple thresholds. These thresholds allow larger false branches to

be removed from the main tree while preserving smaller branches from the periph-

ery. Figure B.1a shows the airway tree after skeletonisation, Figure B.1b shows the

centreline after pruning with a low threshold and figure B.1c shows the centreline

after pruning with a high threshold. This example has an obstructed RUL bronchi

(leading to a short RUL centreline). The low threshold removes this branch and the

high threshold preserves this branch but includes other false branches (Figure B.1c).
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Reconstructing a new tree, from both these pruned trees, using branch connectivity,

we can apply a high threshold to the trachea and a lower threshold to other branches

(Figure B.1d).

(a) Airway centreline
after skeletonisation

(b) Pruning using
low threshold

(c) Pruning using high
threshold

(d) Final recon-
structed tree

Figure B.1: Example of multithreshold pruning steps

Even with this method some cases require manual interaction (21 of the 90 test

cases required some interaction). These cases are almost entirely due to severe pathol-

ogy. Table B.1 shows the interactions required for these 21 cases. Branches can be

kept, removed or branch points can be inserted. This is applied by listing the unique

identifier assigned to the branch. Inserting a branch point requires two identifiers

(branch and location on the branch).

Figure B.2 shows an example of complete obstruction of the LMB. In this case the

pruning method will remove the remaining section of the LMB and manual interaction

is required to preserve the branch (see t1 in Table B.1)

Figure B.3 shows a second example of manual interaction. As shown in the Figure,

the structure of the LMB region is changed. This requires manual interaction to

remove a section of the skeleton (see t8 in Table B.1)
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TB dataset remove keep insert 1 insert 2
t1 0 4 0 0
t2 33 0 0 0
t3 0 16 0 0
t4 11 15 0 0
t5 0 3 0 0
t6 6 0 0 0
t7 0 0 3 27
t8 48 0 0 0
t9 0 0 11 28
t10 0 0 2 73

Non-TB dataset remove keep insert 1 insert 2
nt1 0 0 13 17
nt2 33 0 0 0
nt3 4 0 0 0
nt4 44 0 0 0
nt5 1 0 0 0
nt6 26 0 0 0
nt7 0 0 20 36
nt8 7 0 0 0
nt9 0 0 12 17
nt10 0 0 11 16
nt11 14 0 0 0

Table B.1: Manual interaction required for 21 of the 90 test cases using keep, remove
or insert to edit skeleton. Each number is the unique label of the branch that requires
interaction.

(a) (b) (c)

Figure B.2: Example T1
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(a) (b)

(c) (d)

Figure B.3: Example T8
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C
Data from registration analysis

This section contains additional data from the mesh quality analysis that was per-

formed in Chapter 4. Table C.1 and Table C.2 show the mean accuracy of the

registration in terms of Vdif and Vopen, for parameters α and β. Table C.3 - C.6 show

the optimisation values using all three parameters. A grid search was performed over

α, β and γ. Each value on the grid search involves registering a mesh to all cases in

the training set and takes approximately 30 minutes.

The optimal fit for the training set was found at α = 0.1, β = 1.0 and γ =

0.8. Using these parameters, the optimal fit for the each case in the training set

is shown in Table C.7. As discussed in Chapter 4, the mean values obtained are

Vdif = 0.021± 0.009 and Vopen = 0.0022± 0.0049.

Figure C.1 shows an example of the mesh quality analysis on a single airway. As

expected more noise is present in a single airway mesh analysis than the entire airway

tree. Figure C.1c shows a scatter plot of the relationship between q1 and q2.
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α β=0.5 β=1
0 0.1598 0.1598
0.1 0.0394 0.0452
0.2 0.0321 0.0371
0.3 0.0327 0.0326
0.4 0.029 0.0332
0.5 0.0293 0.0304
0.6 0.0312 0.0321
0.7 0.0305 0.0322
0.8 0.0292 0.0303
0.9 0.0292 0.0268

Table C.1: Vdif for closest point and mesh preserving terms (F1, F2)

α β=0.5 β=1
0 0.0925 0.0925
0.1 0.0107 0.0148
0.2 0.008 0.0107
0.3 0.0097 0.0074
0.4 0.0073 0.0099
0.5 0.0077 0.0078
0.6 0.0098 0.0091
0.7 0.0095 0.0103
0.8 0.0084 0.0087
0.9 0.0083 0.0057

Table C.2: Vopen for closest point and mesh preserving terms (F1, F2)

γ α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6
0 0.1598 0.0394 0.0321 0.0327 0.029 0.0293 0.0312
0.1 0.0357 0.0282 0.0284 0.0303 0.0283 0.0293 0.0305
0.2 0.0292 0.0257 0.0265 0.0274 0.0281 0.0288 0.029
0.3 0.0281 0.0245 0.0256 0.0267 0.0265 0.0272 0.0277
0.4 0.0261 0.0235 0.0253 0.0254 0.0258 0.0268 0.0269
0.5 0.0229 0.0226 0.0242 0.0258 0.0252 0.0266 0.0258
0.6 0.023 0.0225 0.0235 0.0252 0.0252 0.0256 0.026
0.7 0.0229 0.022 0.023 0.0244 0.0246 0.025 0.0254
0.8 0.0217 0.022 0.0225 0.0235 0.0239 0.0246 0.0246
0.9 0.0221 0.024 0.0225 0.0231 0.0243 0.0237 0.0243
1 0.0233 0.0224 0.0224 0.0231 0.0232 0.0232 0.0233
1.1 0.024 0.0236 0.0225 0.0222 0.0227 0.0228 0.0237
1.2 0.0236 0.0213 0.0225 0.022 0.0227 0.0232 0.0242
1.3 0.0223 0.021 0.0221 0.0217 0.0229 0.0232 0.0395
1.4 0.0218 0.0205 0.022 0.0229 0.0237 0.0373 0.1724
1.5 0.0237 0.0236 0.0226 0.0226 0.0351 0.1709 0.3599
1.6 0.0224 0.0209 0.0227 0.0371 0.1694 0.352 0.4371

Table C.3: Vdif for entire method (F1, F2, F3) (β =0.5)
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γ α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6
0 0.0925 0.0107 0.008 0.0097 0.0073 0.0077 0.0098
0.1 0.0085 0.0058 0.0064 0.0087 0.0068 0.008 0.0094
0.2 0.0075 0.0043 0.0052 0.006 0.0068 0.0077 0.008
0.3 0.0078 0.0037 0.0048 0.0058 0.0057 0.0065 0.007
0.4 0.0061 0.0032 0.0043 0.0049 0.0052 0.0059 0.0064
0.5 0.0036 0.0028 0.0038 0.005 0.005 0.0063 0.0057
0.6 0.0036 0.003 0.0034 0.0046 0.0047 0.005 0.0054
0.7 0.0035 0.0027 0.0031 0.0041 0.0044 0.0046 0.005
0.8 0.0028 0.0028 0.003 0.0036 0.0041 0.0045 0.0046
0.9 0.0031 0.0049 0.0029 0.0034 0.0044 0.0039 0.0043
1 0.0043 0.0034 0.0028 0.0036 0.0034 0.0034 0.0035
1.1 0.005 0.0048 0.0032 0.0029 0.0031 0.0029 0.0037
1.2 0.005 0.0026 0.0032 0.0027 0.0033 0.0033 0.0041
1.3 0.0037 0.0022 0.0029 0.0025 0.0033 0.0034 0.0106
1.4 0.0033 0.0019 0.0029 0.0036 0.0039 0.0101 0.0785
1.5 0.0052 0.0048 0.0035 0.0032 0.0075 0.0766 0.241
1.6 0.0039 0.002 0.0031 0.0083 0.0765 0.2337 0.3182

Table C.4: Vopen for entire method (F1, F2, F3) (β =0.5)

γ α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6
0 0.1598 0.0452 0.0371 0.0326 0.0332 0.0304 0.0321
0.1 0.0379 0.0358 0.0332 0.03 0.0292 0.0292 0.0293
0.2 0.0304 0.0317 0.0287 0.0265 0.0288 0.0277 0.0277
0.3 0.0307 0.0277 0.0257 0.0274 0.027 0.027 0.0275
0.4 0.0272 0.0259 0.025 0.0256 0.0268 0.0269 0.0268
0.5 0.0258 0.0252 0.0248 0.025 0.0248 0.0262 0.0253
0.6 0.024 0.0227 0.0235 0.0253 0.0252 0.0257 0.0253
0.7 0.0241 0.0244 0.0236 0.0242 0.0243 0.0248 0.0246
0.8 0.0224 0.0213 0.0224 0.0232 0.0236 0.0241 0.0243
0.9 0.0247 0.0213 0.0225 0.0231 0.0234 0.0243 0.0245
1 0.0251 0.0239 0.0226 0.0232 0.023 0.0238 0.0268
1.1 0.0228 0.0212 0.0227 0.0234 0.0241 0.0251 0.0419
1.2 0.0246 0.022 0.0212 0.023 0.0258 0.0419 0.0666
1.3 0.0233 0.0204 0.0219 0.023 0.0379 0.066 0.1581
1.4 0.0237 0.022 0.0239 0.0326 0.0644 0.1572 0.3941
1.5 0.0224 0.022 0.0333 0.0573 0.1521 0.3819 0.542
1.6 0.0242 0.0332 0.0536 0.1503 0.3616 0.4993 0.6135

Table C.5: Vdif for entire method (F1, F2, F3) (β =1.0)
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γ α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6
0 0.0925 0.0148 0.0107 0.0074 0.0099 0.0078 0.0091
0.1 0.009 0.0116 0.0093 0.0073 0.0065 0.0065 0.0068
0.2 0.0075 0.0095 0.0056 0.0047 0.0061 0.006 0.0062
0.3 0.0092 0.0067 0.0042 0.0055 0.0055 0.0057 0.0061
0.4 0.006 0.0053 0.004 0.0049 0.0054 0.0057 0.0057
0.5 0.0055 0.0052 0.0033 0.004 0.0043 0.0055 0.0045
0.6 0.0043 0.003 0.0032 0.0045 0.0043 0.0047 0.0042
0.7 0.0045 0.0052 0.0036 0.0037 0.0037 0.0041 0.0038
0.8 0.0028 0.0022 0.0028 0.003 0.0034 0.0035 0.0038
0.9 0.0053 0.0025 0.0028 0.0031 0.0032 0.0041 0.0041
1 0.0062 0.0049 0.0031 0.0036 0.0028 0.0031 0.0059
1.1 0.0041 0.0025 0.0033 0.0036 0.0041 0.0044 0.0183
1.2 0.0057 0.0033 0.0022 0.0033 0.0052 0.0183 0.032
1.3 0.0047 0.0018 0.0028 0.0032 0.0145 0.0326 0.0863
1.4 0.005 0.0025 0.0043 0.0108 0.0315 0.0816 0.2782
1.5 0.0031 0.0028 0.0108 0.0253 0.0766 0.2627 0.4222
1.6 0.0047 0.0119 0.0222 0.0763 0.2434 0.3797 0.4898

Table C.6: Vopen for entire method (F1, F2, F3) (β =1.0)
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(b) Histogram of q2 assessment
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(c) Scatter plot of mesh triangles
with q1 vs q1

Figure C.1: Example quality assessment for a single airway
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Case Vdif Vopen Case Vdif Vopen

C 1 0.05721 0.02620 C 41 0.02352 0.00004
C 2 0.00000 0.00000 C 42 0.02391 0.00000
C 3 0.01829 0.00220 C 43 0.01947 0.00003
C 4 0.01678 0.00000 C 44 0.01848 0.00000
C 5 0.02131 0.00041 C 45 0.02430 0.00227
C 6 0.03282 0.00789 C 46 0.02683 0.00000
C 7 0.01659 0.00000 C 47 0.02277 0.00141
C 8 0.02020 0.00000 C 48 0.02050 0.00404
C 9 0.00559 0.00000 C 49 0.02087 0.00000
C 10 0.02725 0.01051 C 50 0.02314 0.00000
C 11 0.02516 0.00085 C 51 0.03161 0.00483
C 12 0.01747 0.00000 C 52 0.03071 0.00857
C 13 0.02351 0.00477 C 53 0.01929 0.00000
C 14 0.00419 0.00000 C 54 0.02536 0.00000
C 15 0.01656 0.00003 C 55 0.02827 0.00006
C 16 0.00526 0.00000 C 56 0.02162 0.00071
C 17 0.01492 0.00012 C 57 0.00495 0.00000
C 18 0.01729 0.00014 C 58 0.01953 0.00000
C 19 0.01667 0.00000 C 59 0.01841 0.00028
C 20 0.02677 0.00546 C 60 0.02395 0.00011
C 21 0.01941 0.00002 C 61 0.02089 0.00010
C 22 0.02319 0.00467 C 62 0.02089 0.00042
C 23 0.02485 0.00604 C 63 0.02329 0.00000
C 24 0.01395 0.00002 C 64 0.02051 0.00000
C 25 0.03231 0.00000 C 65 0.04746 0.00726
C 26 0.01925 0.00040 C 66 0.02198 0.00000
C 27 0.00416 0.00009 C 67 0.02054 0.00471
C 28 0.01872 0.00000 C 68 0.01963 0.00041
C 29 0.02953 0.00804 C 69 0.01985 0.00002
C 30 0.01844 0.00007 C 70 0.02686 0.00071
C 31 0.00521 0.00015 C 71 0.04305 0.01952
C 32 0.01666 0.00000 C 72 0.02730 0.00054
C 33 0.01964 0.00466 C 73 0.02290 0.00000
C 34 0.02132 0.00071 C 74 0.01949 0.00111
C 35 0.00370 0.00000 C 75 0.02670 0.00000
C 36 0.01872 0.00029 C 76 0.00997 0.00040
C 37 0.01699 0.00257 C 77 0.02234 0.00000
C 38 0.02114 0.00132 C 78 0.02170 0.00000
C 39 0.02276 0.00083
C 40 0.04192 0.02426

Table C.7: Accuracy of the registered template mesh compared to the original mesh for each
training case in the trachea-LMB-RMB region. Cases with obstruction are automatically
excluded (discussed in more detail in Chapter 6).
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D
Shape model features

Table D.1 and Table D.2 show the shape model derived features for the trachea-LMB-

RMB and RMB-RUL-BI regions respectively. Each case is represented by 11 features

(columns) and rows represent each case in the dataset.

If an obstructed branch is detected in the region of interest it is automatically

removed from the feature based classification and processed separately. Therefore,

the trachea-LMB-RMB regions consists of 160 cases (78 training and 82 test) with 19

cases (11 training and 8 test) automatically identified as having obstruction and not

included. The RMB-RUL-BI region consists of 137 cases (64 training and 73 test)

with 42 cases identified as having obstruction (23 training and 17 test).

233



APPENDIX D. SHAPE MODEL FEATURES

Table D.1: Principal components used for classification of the Trachea-RMB-LMB region.
Rows are cases, columns are the 11 components used for classification. Gosh non-TB
training set:C1-C37, Tygerberg TB training set: C38-C78, Tygerberg TB test set: C79-
C114, and Tygerberg non-TB test set: C115-C160.

C 1 -0.04657 0.01323 0.05418 -0.04815 -0.04048 -0.00193 -0.01122 -0.02242 -0.01590 0.00871 -0.00329

C 2 0.03466 -0.07251 0.00189 -0.01655 -0.00444 0.01586 -0.01832 0.00710 -0.00047 -0.00585 -0.00800

C 3 -0.19104 -0.03292 0.02370 -0.03388 0.00209 -0.04407 -0.00878 -0.01070 0.00324 -0.00791 0.01366

C 4 -0.01770 -0.01839 -0.00540 -0.04704 -0.00974 0.00475 -0.01206 0.01883 -0.00834 0.02436 -0.00274

C 5 -0.05252 -0.06918 0.00675 -0.05244 0.01291 -0.03676 0.00221 0.02244 0.00448 -0.00990 -0.00911

C 6 0.01259 -0.14375 -0.02956 -0.02410 -0.04820 0.00041 0.00516 0.04674 -0.00483 -0.02073 -0.01062

C 7 -0.03197 -0.13428 -0.03608 0.01797 -0.03815 -0.00684 -0.00173 -0.01743 -0.02607 0.01026 -0.00141

C 8 0.03440 0.02990 -0.01909 -0.03143 -0.03480 0.02546 0.00673 0.02605 0.00130 -0.01302 -0.01717

C 9 -0.07890 -0.11889 -0.01773 0.00057 0.00760 -0.03592 -0.01333 -0.02331 -0.00425 -0.01647 0.01744

C 10 -0.00658 0.00948 0.01095 -0.01386 -0.03106 0.04407 -0.00357 -0.01955 -0.00233 0.00478 -0.00256

C 11 -0.09196 0.08446 0.00484 -0.02593 -0.01693 0.03301 0.02919 -0.01363 -0.01595 -0.02466 -0.01712

C 12 -0.16528 -0.06508 -0.02427 0.01913 -0.00476 0.01040 0.03118 0.02617 -0.02026 0.01880 -0.02108

C 13 -0.19482 0.05022 0.07578 -0.02338 -0.01605 -0.00731 0.02305 -0.06112 0.03065 -0.02972 -0.01955

C 14 0.08441 0.01320 0.00216 -0.02753 -0.00579 0.00845 0.00493 -0.00734 0.02024 -0.03154 0.00211

C 15 -0.07061 0.02669 -0.02829 -0.03823 -0.04761 0.00668 -0.01632 0.02161 -0.00083 0.01384 0.00659

C 16 0.01846 -0.10590 -0.01632 -0.02024 0.00270 0.01512 0.00701 -0.01941 0.00525 -0.00185 0.02996

C 17 -0.01270 -0.00254 -0.00079 -0.02676 -0.01575 0.02712 0.00855 0.00358 -0.00520 -0.00846 -0.00986

C 18 -0.02909 -0.11746 -0.00379 -0.02239 -0.03446 -0.02379 0.01689 -0.01178 -0.00977 0.01643 0.01448

C 19 -0.11031 -0.03864 0.00146 -0.00718 -0.02793 0.02730 -0.00292 -0.00147 -0.00761 0.00094 0.01589

C 20 0.00541 0.01398 -0.03090 -0.02923 -0.00322 0.01279 -0.00790 0.02845 -0.00544 -0.00390 -0.00422

C 21 -0.18604 -0.06840 -0.03600 0.00144 0.00505 -0.02804 -0.02113 0.03332 0.00714 0.00704 0.02299

C 22 -0.04920 -0.05555 0.01287 0.00478 -0.02519 0.00524 -0.00393 -0.00456 -0.01475 -0.00617 0.01179

C 23 -0.09930 -0.06349 0.01187 -0.01320 -0.01746 -0.00073 0.01100 0.01276 -0.01620 -0.00429 -0.02679

C 24 -0.06194 -0.00846 -0.05597 -0.07390 0.00645 0.03824 0.00384 0.01173 -0.00586 0.02699 -0.00980

C 25 -0.16393 -0.06260 -0.03013 0.03224 -0.00723 0.01217 0.01643 0.02244 0.02886 0.01326 0.00321

C 26 -0.01048 0.02373 -0.01355 -0.00191 0.00046 0.01937 -0.00891 0.01707 -0.00684 0.01864 -0.00707

C 27 0.00182 0.00021 -0.02989 -0.07527 -0.04194 0.01897 0.01791 -0.02065 -0.00241 -0.01912 -0.00019

Continued on next page
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C 28 -0.03561 -0.03519 0.00235 -0.00607 -0.03233 0.01430 0.01815 0.00000 -0.01600 0.00397 0.00822

C 29 -0.02346 -0.12430 0.02581 -0.00732 -0.03005 -0.01018 -0.00865 -0.01190 0.00123 -0.02091 -0.01179

C 30 0.05895 -0.02944 -0.00587 -0.01127 -0.01032 0.05104 -0.00512 -0.00876 0.00164 -0.00979 0.00169

C 31 -0.09161 0.05020 0.03327 -0.02079 -0.02051 -0.01040 0.00631 -0.03004 -0.01314 -0.00807 -0.01069

C 32 -0.05913 -0.07156 0.03269 0.01954 -0.02940 -0.01697 -0.00299 -0.00038 0.01236 -0.01652 0.01419

C 33 -0.05040 -0.08696 0.03282 0.03343 -0.02722 0.02646 -0.00196 -0.00909 -0.00589 0.00239 0.02370

C 34 0.06522 0.06479 -0.01063 -0.02047 -0.02375 -0.02205 0.03976 0.01106 0.00820 0.01854 -0.00629

C 35 -0.02735 -0.07827 -0.02556 -0.02316 -0.04097 0.01217 0.00664 -0.01245 -0.01583 -0.00708 0.00960

C 36 -0.07979 -0.07675 -0.07824 -0.01942 -0.06579 0.00641 0.03182 -0.01251 -0.00883 0.03851 0.02242

C 37 -0.06751 -0.04200 0.00930 -0.05149 -0.05580 0.01935 0.03397 -0.01983 0.03877 0.00492 0.02025

C 38 0.04444 0.03698 0.02991 -0.00787 -0.02952 -0.01958 -0.01649 0.01700 0.01072 0.00486 -0.00062

C 39 0.08397 0.00605 0.00882 -0.03484 0.04952 -0.01973 -0.01201 0.01299 -0.02895 -0.00414 -0.01733

C 40 0.14723 -0.10949 -0.02567 -0.00125 0.04350 0.04008 -0.00393 0.01519 0.00112 -0.00529 0.01539

C 41 0.08844 -0.02469 0.03709 0.01259 -0.01043 0.00501 -0.00465 0.02050 -0.00427 0.02801 -0.00156

C 42 0.05444 -0.05215 0.04395 -0.04666 0.02067 -0.00517 0.04239 0.00672 0.01498 0.03888 -0.00970

C 43 0.01101 0.01338 0.06806 0.01357 0.00223 0.01480 0.01065 0.00549 0.00444 0.01223 0.00501

C 44 0.05809 0.09042 -0.02274 0.00130 -0.00634 -0.01606 0.00593 0.00825 0.00082 -0.02213 0.00551

C 45 0.04643 0.02175 0.02107 -0.02549 0.00994 -0.00272 -0.02139 -0.01630 0.00848 0.04349 -0.00606

C 46 0.06380 0.06264 -0.03329 -0.02361 -0.00763 -0.01027 0.00900 -0.01731 0.00961 -0.00197 0.02543

C 47 0.05156 0.05010 -0.02892 -0.02019 0.01740 0.00023 -0.00798 -0.02915 0.02361 0.00412 0.01298

C 48 -0.00519 -0.00028 0.05192 0.01903 0.00596 0.00597 -0.02008 0.00530 0.01563 0.01905 -0.00682

C 49 0.01806 0.10202 -0.00817 0.00592 -0.02597 -0.00026 -0.01887 -0.00087 -0.02026 0.00298 -0.01234

C 50 0.00648 0.00271 -0.04182 0.02725 0.01772 0.03572 0.00243 0.02787 -0.01379 0.00848 -0.01168

C 51 0.09886 0.01141 -0.03761 -0.00025 0.05076 -0.00270 -0.01900 -0.03539 0.00657 0.00796 0.00929

C 52 -0.02764 0.08985 0.00934 -0.00944 0.05364 0.01175 -0.02742 0.00320 -0.00677 -0.02082 0.01902

C 53 0.11147 -0.00660 0.00246 0.01359 -0.00743 -0.00346 0.01791 0.00866 0.00091 0.00440 0.01858

C 54 0.13276 0.01959 0.00271 -0.00385 -0.01784 -0.02747 0.01178 0.01507 -0.00294 0.00017 0.00566

C 55 0.04053 0.08718 0.03648 -0.00054 0.00662 0.03398 -0.00090 0.01424 -0.02441 -0.00347 0.00433

C 56 -0.03414 -0.07486 0.01921 -0.02909 0.02155 -0.00542 -0.00765 0.01386 0.00414 0.00941 -0.01079

C 57 0.18815 -0.05575 -0.02235 -0.03768 -0.02799 -0.03789 0.03547 -0.00827 0.00198 -0.00442 0.02726

C 58 0.03662 0.01956 -0.04906 0.02301 0.01279 0.00962 -0.00145 0.00063 -0.03519 0.00089 0.00096

Continued on next page
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C 59 0.06510 -0.05679 -0.06419 -0.01470 0.02664 0.02048 -0.01072 0.00235 -0.02473 -0.00596 0.00027

C 60 0.05439 0.08651 0.02726 0.01045 0.03357 0.02912 0.02235 -0.01566 -0.01848 -0.01434 0.00676

C 61 -0.05850 0.03085 0.00674 0.01236 0.00454 0.02098 0.01678 -0.02461 0.01291 0.00912 -0.01052

C 62 0.03596 -0.02553 -0.02865 0.03841 -0.01674 -0.00079 -0.01307 0.01463 0.00296 0.02693 -0.00047

C 63 0.09397 -0.02730 0.03321 0.03811 -0.02673 0.02795 0.03234 -0.04924 0.02732 0.00007 0.00172

C 64 0.05176 -0.04429 -0.00238 0.04337 0.01546 0.01383 0.02686 0.01969 -0.00258 0.01172 0.01107

C 65 0.09425 -0.06044 0.08763 0.00701 -0.02803 -0.02484 0.03604 0.01090 -0.02137 -0.04032 0.00791

C 66 0.04415 0.07981 0.01453 0.00806 -0.01748 0.00458 0.01092 0.02044 0.01082 0.01807 0.00095

C 67 -0.01190 0.01273 0.00120 -0.01840 0.01929 0.04607 0.00298 -0.00378 -0.00916 0.01354 0.01091

C 68 0.05722 0.07836 0.01560 -0.02110 0.02223 0.00021 -0.02280 -0.01943 -0.01733 -0.01229 -0.00998

C 69 -0.10444 0.04964 -0.01503 -0.02786 0.05555 -0.02137 -0.00790 -0.02707 0.01231 0.00749 0.01590

C 70 0.09928 -0.03934 0.04214 0.00926 0.03486 0.00049 0.03119 -0.00004 -0.00120 0.01918 0.01305

C 71 -0.06708 -0.02379 -0.01650 0.02669 0.01917 -0.02775 -0.02223 -0.00003 -0.02435 -0.00924 -0.01102

C 72 0.12614 0.04783 0.01044 -0.00797 -0.01812 0.00555 -0.01668 0.01149 0.01577 0.00226 0.00262

C 73 0.04588 0.00511 -0.00831 -0.05818 -0.00263 0.01303 0.00326 -0.01463 0.01449 -0.00415 0.00108

C 74 -0.08721 0.03097 0.03130 0.03333 0.02470 0.05932 -0.01697 -0.03008 -0.00215 -0.00050 0.01143

C 75 0.07790 -0.03827 -0.04868 -0.01857 0.02117 0.02178 -0.02089 0.02713 -0.03110 0.00714 -0.01183

C 76 0.11565 0.02429 0.00176 -0.04348 -0.04122 -0.01194 -0.00095 0.00524 -0.00746 -0.00678 0.00731

C 77 0.08573 0.15048 -0.09975 0.02872 -0.02164 0.01047 0.02489 0.02170 0.04842 -0.02197 0.00331

C 78 -0.01587 0.06338 0.02082 -0.00996 0.01996 0.00385 -0.01007 -0.02704 -0.00353 0.04495 -0.01832

C 79 0.06643 -0.05878 -0.01301 -0.03036 0.00742 -0.04226 -0.00412 -0.03039 0.00248 -0.00664 -0.00211

C 80 0.03086 0.07824 0.01101 0.02096 -0.00835 0.01617 -0.01187 -0.01671 -0.00692 0.00054 0.00558

C 81 -0.04748 0.01826 0.05551 -0.00411 0.03568 0.04342 -0.00958 0.00571 0.02052 0.00405 -0.00038

C 82 -0.01889 0.02775 0.02090 -0.00930 0.02963 -0.05253 0.02758 -0.01658 -0.00555 -0.00803 0.02437

C 83 0.05149 -0.00594 -0.04637 0.01935 0.06434 -0.00607 0.03458 0.01210 0.01554 0.00808 0.01048

C 84 -0.02731 0.03100 0.04414 0.01987 0.01685 -0.00941 -0.01628 -0.01765 -0.00937 0.00279 -0.00842

C 85 0.00776 -0.01193 0.09021 0.03567 0.02399 -0.02168 0.05700 0.01598 0.00321 0.01051 -0.00898

C 86 -0.01290 -0.09688 0.00829 0.04525 -0.00263 0.02601 0.01375 -0.00492 0.00859 -0.00608 -0.01423

C 87 -0.00609 0.05358 -0.10398 -0.03975 0.03934 0.00142 0.03518 -0.00617 0.00503 -0.00133 0.00207

C 88 -0.06374 0.10846 -0.02917 0.00059 -0.02457 -0.00582 -0.00903 0.00438 0.00585 0.01800 -0.00345

C 89 -0.05365 0.07837 0.03671 0.01798 0.01624 0.02082 -0.00720 0.02384 0.00297 -0.02730 0.00641

Continued on next page
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C 90 0.02381 0.06036 0.00817 -0.00455 0.01747 -0.01733 -0.03584 -0.02704 0.00267 0.01285 -0.00268

C 91 -0.03072 0.00367 0.01409 0.04760 -0.00241 -0.01598 -0.02151 -0.04454 0.01641 0.03257 -0.01471

C 92 0.15941 0.00751 0.02044 -0.02136 -0.03586 -0.01107 -0.02160 -0.00190 0.02541 0.01161 -0.02544

C 93 0.00251 0.01406 0.00710 -0.00123 0.00587 -0.00149 0.01913 0.02739 -0.01451 0.00256 -0.00074

C 94 0.10860 0.03859 -0.01595 -0.03240 0.01189 -0.01383 -0.02107 0.00314 -0.01927 0.02147 0.00515

C 95 0.00327 0.02356 0.01814 -0.02660 -0.00637 0.00319 -0.03453 0.00928 0.01995 -0.00117 0.01326

C 96 -0.07284 0.05345 0.03307 0.02328 0.00499 0.01534 -0.02540 -0.00682 -0.00227 -0.00405 0.00257

C 97 0.05668 0.09075 -0.00346 -0.01334 0.00254 0.01242 -0.00641 -0.00486 -0.00567 -0.01922 -0.01716

C 98 -0.08231 0.05619 0.02715 -0.01201 0.03183 0.00076 -0.01252 -0.01241 -0.03106 -0.00748 -0.00766

C 99 0.03580 0.01303 -0.00929 0.05223 0.00379 0.02607 -0.00416 -0.01697 -0.01282 0.00936 0.00357

C 100 0.11606 -0.07381 0.00200 -0.02031 0.05666 -0.00013 -0.01779 -0.00246 0.01615 -0.00146 0.00231

C 101 0.06919 -0.02049 0.00225 -0.01519 -0.01496 0.02355 -0.01073 -0.02425 -0.01490 0.00031 -0.01378

C 102 -0.00609 0.09458 -0.03099 -0.00077 -0.02025 -0.01974 0.00129 -0.01017 -0.00505 0.00622 -0.00985

C 103 0.06925 -0.00527 0.01015 -0.02691 -0.01614 -0.00910 -0.04522 0.00621 0.01606 0.02619 -0.00161

C 104 -0.00412 0.04225 0.02657 0.04295 0.03020 -0.00885 0.00233 0.00794 0.00623 0.01421 0.01736

C 105 0.01898 0.06397 -0.00372 -0.00414 -0.01090 0.00885 0.02188 -0.00094 -0.01917 -0.01175 -0.00986

C 106 0.07571 0.10465 0.02649 0.00660 0.01096 -0.00787 0.01072 0.00065 -0.00799 0.00479 -0.00044

C 107 -0.00256 -0.05214 0.02285 0.05891 0.03356 0.02491 -0.00717 -0.00117 -0.01574 0.00948 -0.00356

C 108 -0.03295 0.02361 0.05778 0.01982 -0.00689 0.00624 -0.00255 0.00081 -0.03057 0.00944 -0.00047

C 109 -0.00662 0.05792 0.00592 -0.02920 0.01854 -0.00762 0.02898 0.00075 -0.02933 -0.01052 0.00655

C 110 0.00892 0.04965 -0.05746 0.04413 0.00745 -0.00401 0.01376 -0.02116 -0.00671 0.00710 -0.01727

C 111 0.14406 0.08474 -0.04401 0.01456 0.01093 -0.01468 0.02272 -0.01013 0.03112 0.00554 0.00922

C 112 -0.00534 -0.02490 0.01203 0.04129 0.02800 0.00456 0.01341 0.00273 -0.00254 -0.00241 -0.00845

C 113 -0.00042 0.03715 0.05550 -0.00870 0.02532 -0.03206 0.01128 0.02179 0.00120 0.00666 0.01526

C 114 0.12270 -0.00880 0.03301 -0.00899 0.00267 -0.01818 -0.00854 0.01858 0.01132 0.02301 -0.01683

C 115 -0.05109 -0.02588 0.02913 -0.01329 0.02806 -0.01032 -0.02845 -0.01302 0.01407 -0.01883 0.00894

C 116 -0.03018 -0.01320 0.05649 0.00548 -0.00396 0.01590 -0.04669 0.00991 0.02375 -0.00319 -0.00268

C 117 0.09738 -0.05306 0.01096 0.04697 -0.02011 0.03723 0.01550 0.00992 0.00699 0.00453 0.00397

C 118 -0.02509 0.03148 0.04270 0.02634 0.01074 -0.01362 0.04052 0.00514 -0.00506 0.00502 -0.00834

C 119 -0.07569 0.07721 0.02207 0.02122 -0.02172 0.00347 -0.00990 -0.00553 -0.00090 0.00325 0.00441

C 120 0.04379 -0.12169 -0.03343 0.08037 0.00397 0.00005 -0.01229 -0.02681 -0.01116 -0.01192 0.00589
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C 121 -0.03173 0.05736 0.01318 0.00241 -0.02500 0.01290 -0.02722 0.00707 0.02477 -0.02233 -0.00259

C 122 -0.12990 0.04038 -0.01610 0.02718 -0.02319 -0.00004 0.00173 -0.00350 0.02343 0.01591 0.00897

C 123 0.02765 -0.02916 -0.01945 0.02071 0.00311 -0.00666 -0.00620 0.01557 -0.03701 -0.01511 0.00712

C 124 -0.06724 0.09489 -0.02825 0.02854 -0.01869 0.00071 -0.00006 0.01478 0.01528 0.00048 0.00079

C 125 0.06140 0.01920 0.01427 -0.02762 0.01026 -0.03339 -0.00681 0.01095 0.00488 -0.00618 -0.00630

C 126 -0.00451 -0.03473 0.00061 -0.02174 0.02338 -0.05616 -0.00113 -0.01273 -0.01589 0.01109 -0.00824

C 127 -0.13886 -0.02558 -0.09154 0.02235 0.04088 -0.01195 0.04596 -0.00270 0.01190 -0.00710 -0.02762

C 128 -0.15523 0.06098 0.02351 0.01943 0.02010 -0.01600 0.00623 0.00982 0.01630 -0.00063 0.00469

C 129 -0.02722 0.05599 -0.00411 0.03005 -0.00730 -0.00744 0.04001 -0.00643 -0.01985 0.00956 0.00217

C 130 0.05896 -0.04671 -0.02414 0.04724 -0.02686 -0.01268 -0.02523 -0.02012 -0.00112 -0.00081 -0.00798

C 131 0.04245 0.02044 0.01590 -0.02526 -0.01843 -0.01394 -0.02091 0.01639 0.00264 0.01238 0.00294

C 132 0.03869 -0.02714 -0.05555 0.04311 -0.03160 -0.00701 -0.00190 -0.00058 -0.00958 -0.00963 -0.00262

C 133 -0.07154 -0.09259 0.01004 -0.01576 -0.00220 -0.01005 -0.02412 -0.00844 -0.01012 0.01333 0.00498

C 134 -0.08146 0.01763 -0.01475 0.05686 0.00703 -0.00899 -0.01305 -0.02262 -0.00374 0.00734 -0.00015

C 135 0.04900 -0.02205 -0.00545 -0.02441 0.00425 -0.03520 -0.01878 0.00684 -0.01410 -0.01102 -0.00140

C 136 0.03568 0.02253 0.04984 -0.03577 -0.01161 -0.02118 -0.00117 0.00041 0.00263 -0.01514 -0.01237

C 137 -0.03986 0.01092 0.02351 0.01225 0.00200 0.00896 0.01166 0.00873 -0.00504 -0.00069 0.00643

C 138 0.04019 -0.12452 -0.15183 0.00517 0.05958 0.02856 -0.03971 -0.03012 0.01804 -0.02606 0.00184

C 139 0.07356 -0.03744 0.01292 0.04268 -0.04605 -0.01892 0.00277 -0.00292 0.00703 -0.00385 -0.00971

C 140 0.03828 -0.03682 -0.00537 -0.01639 -0.00011 0.03691 0.00235 -0.03312 0.00946 -0.01261 0.00032

C 141 0.00852 0.06844 -0.05178 -0.01697 -0.00520 -0.03064 0.01867 -0.03457 -0.01063 -0.01225 -0.00951

C 142 -0.05567 0.09992 -0.09109 0.04836 -0.05050 -0.04443 -0.04744 0.01109 0.03194 -0.00675 0.00225

C 143 -0.02468 0.01415 0.01336 -0.02290 0.01118 -0.02295 0.01433 -0.00253 -0.00257 -0.00024 0.00155

C 144 -0.15130 0.08253 -0.09371 -0.00111 0.03034 -0.03011 0.01290 0.04259 0.02223 -0.00357 -0.01463

C 145 -0.01640 0.02715 0.05979 0.00113 0.04706 0.02228 0.02552 0.02295 0.01039 -0.02613 0.01355

C 146 0.06819 -0.13216 0.04053 0.06027 0.04673 -0.06385 0.02778 -0.00663 0.00275 -0.01093 -0.00495

C 147 -0.02324 -0.06212 -0.02319 0.01621 0.01123 0.00109 0.00897 0.00646 -0.01969 0.00148 -0.00714

C 148 -0.02851 0.07814 -0.04062 -0.03157 -0.00640 -0.01611 -0.01775 -0.00910 -0.04049 -0.01985 -0.00386

C 149 0.03936 0.02825 -0.00951 0.07792 -0.03432 0.00936 0.01832 0.02524 0.01374 -0.02374 -0.02108

C 150 0.00107 -0.04282 0.04197 0.04202 -0.02238 -0.02648 -0.05464 0.05013 0.01058 -0.01486 0.01107

C 151 0.03828 0.00038 0.04330 -0.01055 -0.02215 0.01751 -0.00096 0.02494 0.01962 -0.03485 -0.00517
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C 152 -0.03486 -0.00742 0.01956 0.04718 -0.00988 -0.01236 -0.04208 0.00614 -0.01989 -0.00719 0.01106

C 153 -0.02987 -0.02160 0.01370 0.01125 0.01743 0.01025 -0.00796 0.01421 0.04221 0.00367 0.01449

C 154 0.02896 -0.20451 0.01027 -0.02354 0.03555 -0.00347 -0.00854 -0.01275 0.05238 -0.00977 -0.06025

C 155 -0.09162 -0.06059 0.02961 0.00362 0.01149 0.01378 0.00664 0.01123 -0.00086 -0.00629 -0.00099

C 156 -0.17603 -0.01751 -0.00500 -0.09175 0.04694 0.00193 -0.00066 0.03788 0.00459 0.00049 0.01416

C 157 0.02923 0.05911 -0.02248 0.08178 -0.02898 -0.03599 -0.02036 -0.00453 -0.01865 -0.00574 0.00468

C 158 0.00815 -0.00294 0.03851 -0.02365 0.01001 0.02476 -0.02054 0.02119 -0.00020 -0.00669 0.00429

C 159 -0.02788 0.00391 -0.01739 0.00773 0.04884 0.01369 -0.00275 0.01839 0.00737 -0.01333 0.00203

C 160 -0.06451 0.02320 -0.03819 0.03704 -0.01396 -0.01097 0.01603 0.00613 -0.00199 0.00483 -0.00462

Table D.2: Principal components used for classification of the RMB-RUL-BI region. Rows
are cases, columns are the 11 components used for classification. Rows are cases, columns
are the 11 components used for classification. Gosh non-TB training set:C1-C35, Tygerberg
TB training set: C36-C64, Tygerberg TB test set: C65-C96, and Tygerberg non-TB test
set: C97-C137.

C 1 0.09973 0.01411 0.04256 -0.06621 -0.03136 0.04565 0.02455 0.01551 -0.03670 -0.00881 -0.00699

C 2 0.01968 0.03215 -0.01063 -0.00847 -0.02177 0.04012 -0.00869 0.01774 0.02081 -0.03345 -0.00797

C 3 0.03961 0.14930 -0.04182 0.03354 0.03791 -0.00112 0.00410 0.00784 -0.00143 0.01217 -0.01286

C 4 0.03030 0.00624 0.01364 0.04105 -0.04035 0.01005 -0.00096 0.00971 0.01781 -0.00267 -0.00427

C 5 0.12056 -0.00410 0.02183 0.07195 0.00938 -0.00593 0.07089 -0.00899 -0.04712 0.00193 -0.03722

C 6 0.13224 0.01088 0.06705 0.00155 -0.04874 -0.00938 0.02924 0.01661 -0.02094 0.02872 0.01681

C 7 0.02979 -0.09625 0.07819 0.03869 -0.04392 0.02305 0.03670 -0.01788 -0.02750 0.01377 0.02655

C 8 0.07483 0.07148 -0.02531 0.01462 0.07182 -0.06226 -0.01651 -0.01789 -0.00209 0.02172 -0.00391

C 9 0.08502 -0.07805 -0.02766 -0.00969 0.00148 -0.00717 -0.00119 -0.00678 0.01313 -0.00227 0.01066

C 10 0.06824 -0.00592 -0.04708 0.05031 0.04398 0.01563 -0.04218 -0.01187 0.01089 0.00377 -0.01050

C 11 0.15702 0.03235 0.10353 -0.04212 -0.06744 -0.03759 0.03224 -0.02603 -0.02935 -0.02320 -0.00378

C 12 0.01503 0.13229 -0.17238 0.08522 -0.02273 0.01879 -0.01579 0.04683 -0.02053 -0.01811 0.00101

C 13 0.01326 -0.07935 -0.09091 0.04272 0.04148 -0.02631 0.00523 -0.01104 -0.01382 -0.02421 -0.00468

C 14 0.12998 -0.00559 0.01391 0.00076 -0.00881 -0.00392 0.02920 0.01295 0.02753 -0.01510 -0.01518
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C 15 0.05237 -0.02037 -0.02647 0.05716 -0.01292 -0.01809 0.00183 0.00534 0.01127 0.02151 -0.01065

C 16 0.09172 0.09257 0.00383 0.01762 -0.00852 -0.02795 -0.01537 0.01314 0.02429 0.00662 -0.00074

C 17 0.11911 0.00104 0.01497 0.07082 -0.03350 -0.02971 0.01614 -0.01140 -0.00233 -0.01973 -0.01648

C 18 0.15906 -0.07214 -0.01856 0.01671 0.06651 -0.00951 0.01101 -0.00719 0.00911 -0.01982 0.03223

C 19 0.16995 0.05595 0.09533 -0.01712 0.02198 -0.03591 -0.02720 -0.04690 -0.00931 -0.01730 0.00994

C 20 0.16108 0.01890 -0.01060 -0.07026 0.01545 -0.02136 0.02455 0.01086 -0.01624 -0.00895 -0.00708

C 21 0.17205 0.03649 -0.00895 -0.01077 -0.01634 -0.01696 0.05474 0.01930 -0.00211 -0.02363 -0.00393

C 22 0.02809 -0.11533 0.01549 0.07632 0.06833 -0.05838 0.01199 0.02017 0.04849 0.01096 0.00807

C 23 0.13443 0.07066 0.04207 -0.04415 -0.10060 0.01161 -0.00387 -0.00495 0.01244 -0.03693 0.01231

C 24 0.05469 -0.07270 0.06864 0.03159 -0.04096 0.01258 0.01007 -0.02050 0.00982 0.01638 0.01812

C 25 0.00053 -0.03677 -0.03665 0.11711 0.05241 -0.02222 0.00064 0.00589 0.01762 -0.00057 -0.00715

C 26 0.13712 0.00901 -0.03037 0.01734 -0.01964 -0.01659 0.01175 0.00685 -0.00976 0.01245 -0.00751

C 27 0.13183 0.03712 -0.02673 -0.02009 -0.01448 0.00376 0.03199 0.02863 0.02346 -0.00796 0.00864

C 28 0.07877 -0.01227 -0.06879 0.00837 0.02006 -0.00233 -0.01905 0.03586 0.00632 0.02243 0.01593

C 29 0.03623 -0.02558 -0.07287 -0.00425 0.00502 -0.01095 0.02202 0.00550 -0.01064 -0.01783 -0.03501

C 30 0.15185 0.09930 -0.03818 0.00077 -0.00348 0.00341 -0.01387 0.00390 -0.00454 -0.00969 0.02200

C 31 0.07655 0.11309 -0.05787 -0.00438 -0.05534 0.01754 0.02275 0.02457 -0.00133 -0.00273 -0.00103

C 32 -0.03006 -0.03587 -0.03257 0.05931 0.02421 -0.00588 -0.01679 -0.02773 0.00690 -0.03028 -0.01903

C 33 0.15217 0.03385 -0.03306 0.02446 0.04778 -0.02697 0.07172 -0.00244 0.00928 -0.01586 -0.00351

C 34 0.19800 0.00695 0.06918 0.02731 -0.04658 -0.08021 0.07492 0.00328 0.00570 -0.00288 -0.00360

C 35 0.12576 -0.08268 -0.12289 0.10912 0.09811 -0.00655 0.03820 0.01710 0.00123 -0.00496 0.02483

C 36 0.02243 -0.05623 -0.00721 -0.07688 0.01915 0.03442 -0.00416 -0.03326 -0.00085 -0.01817 -0.00459

C 37 -0.02105 -0.02004 0.00448 -0.00032 -0.06047 0.02294 -0.01363 -0.04349 0.00473 -0.00950 0.01005

C 38 -0.05278 -0.02363 -0.12471 0.01008 -0.04112 -0.02943 0.01682 -0.03117 -0.03758 -0.00576 -0.01959

C 39 -0.12726 -0.12862 -0.04795 -0.13374 0.01877 -0.11036 0.04589 0.03822 0.01289 0.03300 -0.00144

C 40 -0.05050 0.00678 -0.00967 0.02535 -0.02881 0.05756 0.01031 -0.05789 0.03018 0.00621 0.00254

C 41 -0.04040 0.04021 -0.03229 0.01182 0.04887 0.00086 -0.00160 -0.00544 0.01145 -0.01377 -0.03332

C 42 0.01456 0.09953 0.00355 -0.03118 -0.02156 0.10887 0.00384 -0.04618 -0.01799 0.02660 0.03393

C 43 -0.09703 -0.03011 0.12425 -0.06114 0.03279 0.05110 0.03484 0.02096 0.01843 -0.01655 0.02839

C 44 0.01366 -0.01448 0.05386 -0.00350 -0.06790 0.00961 -0.00251 -0.05845 0.03174 0.01584 0.03149

C 45 -0.09214 0.07567 -0.00889 -0.01240 0.05800 0.02484 0.06480 0.01156 0.02235 -0.03871 -0.02969
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C 46 -0.13828 0.05510 -0.00815 0.02757 0.07290 0.01849 0.03145 -0.00936 -0.00789 0.00554 -0.01335

C 47 -0.09652 -0.00411 -0.02202 0.01887 0.03818 -0.01787 0.00824 -0.03159 0.01133 0.01701 0.00499

C 48 -0.01169 -0.02990 0.01270 -0.04706 0.00928 0.00747 -0.02150 0.00946 -0.02050 -0.00995 -0.01134

C 49 -0.01616 -0.06091 -0.02495 0.01746 0.00673 -0.00664 -0.02391 -0.02120 -0.00757 -0.01244 0.00127

C 50 0.06748 -0.04344 0.02856 0.06537 0.06432 0.04461 -0.02438 0.03499 0.02560 0.00704 0.05306

C 51 -0.05486 -0.04972 0.06235 -0.02886 0.01343 0.04042 -0.03625 0.04898 -0.03358 0.00330 -0.02066

C 52 -0.05264 -0.06979 0.02128 -0.00213 -0.04714 0.00791 0.03962 -0.02395 0.02137 -0.01312 -0.02133

C 53 -0.06378 0.02615 0.07767 -0.01817 0.02378 -0.02822 -0.01681 -0.01425 -0.00427 0.00410 -0.01891

C 54 -0.09984 0.06644 -0.02953 0.03769 -0.03305 -0.00989 0.01099 -0.01949 0.01373 0.02484 -0.00287

C 55 0.03608 -0.18576 -0.01417 -0.02267 0.05437 -0.01967 -0.00453 -0.05824 0.00085 -0.03332 0.03355

C 56 -0.10194 0.05243 0.02192 -0.06118 0.05230 0.04128 0.05538 -0.01622 -0.00873 0.02637 0.01757

C 57 -0.19222 0.01562 0.02398 0.07546 0.00051 -0.01964 -0.02485 -0.00158 -0.01350 -0.03789 -0.01341

C 58 -0.08925 0.02537 0.11174 0.05811 0.02251 -0.01175 -0.02987 -0.00345 0.01897 0.02901 -0.00415

C 59 -0.07141 -0.09528 -0.00425 0.05054 0.00812 0.01808 -0.00915 -0.01492 -0.04655 0.02847 0.02164

C 60 0.00375 -0.07743 -0.08795 0.10261 0.04937 0.03133 0.01872 0.01927 0.01530 -0.01244 0.01903

C 61 -0.00723 0.03171 0.11879 0.00705 0.08800 0.02616 0.05819 -0.01536 0.02839 0.00044 0.01077

C 62 -0.03331 -0.10862 0.02700 0.04022 -0.05222 -0.01013 0.00580 -0.06306 -0.03327 -0.01337 -0.02160

C 63 0.00548 -0.09892 0.04212 0.03591 -0.01256 0.00517 0.03207 -0.00905 -0.04300 0.00806 -0.01979

C 64 -0.04750 -0.06724 -0.01691 0.02146 0.01681 -0.00968 0.00852 -0.06979 0.04294 -0.00292 0.01308

C 65 -0.06026 0.04559 -0.06925 -0.01218 0.06094 0.00513 0.01301 -0.04709 -0.00752 -0.00299 0.01555

C 66 -0.05167 0.06786 0.00919 0.04810 -0.01165 -0.00612 -0.02520 -0.00333 0.00792 -0.00065 -0.02914

C 67 -0.03446 0.04989 -0.00717 -0.01506 0.04157 0.06089 0.04989 0.00961 0.02870 0.00532 -0.00632

C 68 -0.05739 -0.08282 -0.04592 0.04254 -0.04679 0.06380 0.01788 0.03473 -0.01348 0.01497 0.02118

C 69 -0.04101 0.14949 -0.05376 -0.03938 0.05933 -0.01270 0.02372 -0.01033 -0.01307 0.03402 0.01316

C 70 -0.00884 -0.00402 -0.01540 -0.11892 0.02407 -0.04087 -0.05386 -0.00154 -0.01221 0.00808 -0.01175

C 71 -0.09184 0.05199 -0.13842 -0.11134 -0.04140 -0.04327 0.00590 0.02327 -0.00315 -0.04119 -0.02551

C 72 -0.13449 -0.06211 -0.01186 -0.00278 0.00885 -0.05101 0.00157 0.04910 -0.02061 0.02129 0.00280

C 73 -0.13373 -0.01284 -0.00961 -0.04097 -0.03627 0.04185 0.06849 0.01565 0.03047 -0.00969 0.00508

C 74 -0.03776 -0.11458 0.01073 -0.00535 -0.02731 0.03437 -0.04354 0.01791 -0.03347 0.00359 0.00677

C 75 -0.02172 -0.01314 0.01058 0.02937 -0.00725 0.02756 -0.06157 0.00803 -0.02702 -0.00349 -0.00517

C 76 0.00640 0.00444 0.03935 0.00487 -0.02899 0.00585 -0.03911 -0.04701 0.03054 -0.00678 -0.01457
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C 77 -0.00908 -0.13540 -0.00593 -0.00017 -0.05438 0.02769 0.01133 0.00622 0.03422 -0.01628 0.00378

C 78 0.01752 -0.03644 -0.00384 -0.04257 0.05346 -0.01618 -0.04158 -0.04016 -0.02620 -0.00831 0.01180

C 79 -0.11920 0.04294 0.03205 -0.08062 0.05038 -0.01102 0.04007 -0.00016 0.03007 0.01783 0.00132

C 80 -0.01697 0.05590 -0.00338 0.00300 -0.04927 0.10657 0.03094 0.00504 0.02815 -0.02423 -0.01825

C 81 -0.03528 -0.02310 0.02023 -0.00860 -0.02868 0.01912 -0.02081 -0.02857 -0.00956 -0.00149 -0.01994

C 82 -0.03176 -0.05317 -0.01542 -0.01898 0.02013 0.04071 0.00820 0.04538 0.00232 -0.00052 -0.00765

C 83 -0.10427 0.01783 -0.07102 -0.14684 -0.01898 -0.03171 0.02565 0.01939 -0.00230 0.06608 0.01047

C 84 -0.10219 0.09159 -0.02147 -0.03809 0.00096 0.01474 0.03900 -0.00289 0.01497 0.01752 -0.00762

C 85 -0.10768 -0.05462 -0.03456 0.07282 0.03742 0.00175 -0.00222 -0.04540 -0.00606 0.01576 -0.00236

C 86 -0.12337 0.05706 0.04018 -0.02998 0.04135 0.01989 -0.00244 0.00818 -0.00482 -0.02126 -0.01727

C 87 0.04671 -0.11153 0.00608 -0.04253 0.00184 0.02360 -0.01534 0.01003 0.03350 -0.02565 0.00686

C 88 -0.05034 0.05659 0.00590 0.00951 0.02673 0.02460 0.03694 -0.06285 -0.01054 0.05335 0.01005

C 89 -0.02473 -0.01055 0.00531 0.00631 0.01120 0.02015 0.00956 0.02692 0.00484 0.01652 -0.03777

C 90 0.03313 -0.01366 0.01530 0.00064 -0.01467 -0.01728 -0.01378 0.01082 0.02459 0.01506 -0.03425

C 91 -0.02832 0.10075 0.00955 0.10237 0.01312 0.05277 0.04013 0.02855 -0.02097 0.00494 0.00983

C 92 -0.08564 0.03818 0.00694 0.03649 -0.03981 0.01202 0.03996 -0.01186 0.04053 0.00034 -0.02300

C 93 -0.10268 0.04490 -0.09040 -0.02740 -0.02515 -0.01425 0.01403 -0.02545 -0.01031 0.01339 -0.01045

C 94 -0.04471 0.00747 -0.06003 -0.01277 -0.05292 -0.01962 0.01626 -0.04100 -0.02049 0.00502 -0.03060

C 95 0.00225 -0.00621 0.02397 0.05243 -0.02023 -0.00920 0.02608 -0.00716 -0.05357 -0.00512 -0.01696

C 96 0.01482 -0.05754 0.00201 -0.05133 -0.05047 0.01637 -0.01064 -0.05416 -0.01316 0.03536 0.00817

C 97 -0.03353 0.10275 -0.04742 0.01788 0.00003 0.06378 -0.03565 0.02395 -0.01349 -0.00621 -0.00092

C 98 0.04394 0.03734 -0.04642 -0.02613 -0.03175 0.01532 -0.00912 -0.00637 0.02569 0.01384 -0.00478

C 99 0.03833 0.06128 -0.09394 -0.11105 -0.01526 -0.00323 -0.01823 0.00106 0.00277 0.01482 -0.00266

C 100 0.05892 -0.05443 -0.03605 -0.09135 0.04944 -0.03037 -0.03434 -0.02871 0.03402 -0.00525 0.01114

C 101 -0.07345 0.10978 0.03836 0.02572 -0.06765 -0.01484 -0.02345 -0.01449 0.00338 -0.01893 -0.00549

C 102 0.02287 -0.08567 0.01417 0.00535 -0.00670 0.03212 -0.07047 -0.00192 -0.00933 0.01225 0.01964

C 103 -0.06406 -0.03649 0.01244 0.03418 -0.07045 -0.02231 -0.01379 0.01693 0.07116 -0.02493 0.00813

C 104 -0.05330 -0.02609 0.12249 0.00331 -0.00823 -0.01561 -0.02759 0.00946 -0.03768 0.00816 0.00074

C 105 0.00099 -0.05991 0.07285 -0.08856 0.07537 0.00563 0.01281 -0.01177 -0.02024 -0.00747 0.00478

C 106 -0.00163 0.01365 -0.05841 -0.02221 -0.02335 0.00235 -0.00570 -0.00452 -0.02347 0.02626 -0.00601

C 107 -0.10849 0.05303 0.04059 0.06550 0.00281 -0.03486 -0.03630 0.01151 0.03023 0.00883 -0.00496
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C 108 0.03417 0.05266 0.12976 0.03011 -0.03784 -0.06128 0.01811 0.02714 0.02618 0.02090 0.00938

C 109 -0.08464 -0.05666 0.01634 0.00100 0.00218 -0.00439 -0.05425 0.01689 0.04012 -0.00599 -0.00347

C 110 0.00123 0.05866 0.03434 0.05290 0.02625 -0.01577 -0.04146 0.00416 0.03675 0.02184 -0.00076

C 111 0.04958 0.00424 -0.02178 -0.11603 -0.01489 0.01797 -0.01566 -0.01240 0.00581 -0.01501 -0.00255

C 112 0.06034 0.10952 0.14333 -0.02251 0.04863 0.01357 -0.02560 0.04621 -0.06344 -0.00296 0.00139

C 113 0.07193 0.09781 0.00913 -0.03914 0.01005 -0.00930 -0.06518 -0.02689 0.01191 0.00492 0.02923

C 114 0.00754 0.13167 0.01547 -0.02536 -0.03873 -0.02136 -0.05421 -0.01777 -0.00479 0.01889 -0.00359

C 115 -0.04610 0.01636 0.05167 0.02437 0.04024 0.01377 -0.03436 0.02291 -0.01098 -0.04562 -0.02751

C 116 -0.00226 -0.03851 -0.03517 -0.06676 0.07097 -0.00869 -0.02414 0.01910 0.00480 0.00968 -0.01637

C 117 0.04458 -0.04787 0.01463 0.04289 -0.00667 -0.03768 -0.00842 0.01460 -0.01831 0.01408 -0.00038

C 118 0.07409 -0.01540 -0.02129 -0.08121 -0.00262 -0.00111 -0.01101 0.01863 0.03237 0.01894 -0.02081

C 119 -0.10284 -0.00449 0.09418 0.13882 -0.11018 -0.04914 0.00539 0.04215 0.00402 0.04403 0.01251

C 120 -0.00583 0.03555 -0.03248 -0.07481 -0.00633 -0.01619 -0.06770 0.03181 0.01641 -0.02328 -0.01490

C 121 0.03742 0.03996 -0.05368 0.13517 0.02257 -0.01965 -0.04400 -0.00763 -0.02450 -0.00660 -0.00025

C 122 0.05085 -0.01046 0.04027 -0.05433 0.03040 -0.01627 -0.00273 0.01903 -0.01722 0.01022 -0.00169

C 123 0.02242 0.06333 0.12552 -0.00468 0.02126 0.00246 -0.03658 0.02208 0.02271 -0.01185 0.00279

C 124 -0.02178 0.00614 -0.03467 0.02725 -0.02176 0.02288 -0.01659 -0.01654 -0.01274 -0.01310 -0.01624

C 125 -0.08212 -0.09467 -0.12173 0.03206 -0.05041 -0.01865 -0.04046 -0.00171 -0.00114 -0.02882 0.01287

C 126 0.03237 0.11618 0.04847 0.02458 0.05063 0.00131 -0.05851 0.03913 0.02951 0.00560 0.02597

C 127 -0.09578 0.06784 0.10792 0.06429 0.03758 -0.03422 -0.02728 0.00309 -0.03750 -0.00594 -0.01607

C 128 0.02620 -0.04416 0.09514 -0.13309 0.02408 0.07752 -0.01528 0.00600 -0.01436 -0.02704 0.00840

C 129 0.04935 -0.11774 -0.08141 -0.01839 -0.01576 0.03236 0.01628 0.07011 -0.02661 0.01940 0.01628

C 130 -0.14562 -0.15029 0.10822 -0.07912 -0.04275 -0.06761 0.02159 0.05677 0.01340 -0.02374 -0.00090

C 131 -0.03949 -0.07295 -0.09071 0.01230 -0.09642 0.02284 -0.03059 0.05218 -0.00218 0.02101 0.02858

C 132 0.12483 0.03442 -0.12996 -0.06071 -0.03118 -0.01817 -0.04971 -0.01582 -0.00427 0.02150 0.01399

C 133 -0.00434 -0.08240 0.03004 -0.03944 0.04569 -0.01538 0.00755 0.01243 -0.05450 0.00601 -0.01635

C 134 -0.25465 0.18578 -0.03386 -0.01176 -0.03472 -0.10464 0.04495 0.00429 -0.04825 -0.08375 0.12316

C 135 0.03454 -0.02767 -0.03262 0.02801 -0.01151 0.05891 0.00328 0.04200 -0.01258 0.02476 0.01385

C 136 -0.01417 -0.08272 0.03550 0.02835 0.00164 0.01830 -0.00550 0.00650 -0.02551 -0.02593 -0.00590

C 137 0.06387 0.00837 0.04533 -0.01325 -0.03352 -0.04333 -0.00199 -0.00548 0.01419 0.03225 -0.00781
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